People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Ramos, António Pinho
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (6/6 displayed)
- 2019Behavior of thin lightly reinforced flat slabs under concentric loadingcitations
- 2019Punching capacity of rc slab-column joints with opening under lateral loading
- 2018Performance assessment of flat slabs strengthened with a bonded reinforced-concrete overlaycitations
- 2017Accelerated action of external sulfate and chloride to study corrosion of tensile steel in reinforced concretecitations
- 2014On the efficiency of flat slabs strengthening against punching using externally bonded fibre reinforced polymerscitations
- 2014PVA composite catalytic membranes for hyacinth flavour synthesis in a pervaporation membrane reactorcitations
Places of action
Organizations | Location | People |
---|
article
Behavior of thin lightly reinforced flat slabs under concentric loading
Abstract
The current research aims to study the behavior of thin reinforced concrete (RC) slabs under concentrated loads as well as to investigate the application of Critical Shear Crack Theory (CSCT) to such slabs. For this purpose, four square 100-mm-thick slabs were cast and subjected to concentrated punching monotonic loading. The experimental parameters were the flexural reinforcement ratio, 0.38% and 1.00%, and the presence or absence of shear headed stud reinforcement. It is shown that the failure criteria of CSCT describe reasonably well the observed failure modes and the ultimate loads of the specimens. However, attention is brought to some peculiarities in the analytical derivation of the load-rotation curve for thin lightly reinforced flat slabs, in which large deformations are experienced. Results showed that in such slabs, the behavior can be highly influenced by the post-yield stress-strain curve of the flexural steel reinforcement. As a result, the constitutive law of steel reinforcement should be explicitly taken into account in such cases. The versatility of CSCT to adapt to these conditions is demonstrated. ; authorsversion ; published