People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Biscaia, Hugo C.
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (20/20 displayed)
- 2023Laboratory Tests on Structural Adhesive Joints
- 2022Emerging anchored FRP systems bonded to steel subjected to monotonic and cyclic loading: A numerical studycitations
- 2022Numerical Analysis on the Bond Performance of Different Anchored Joints under Monotonic and Cyclic Pull-push Loading
- 2022Using digital image correlation to evaluate the bond between carbon fibre-reinforced polymers and timbercitations
- 2021Experimental calibration of the bond-slip relationship of different CFRP-to-timber joints through digital image correlation measurementscitations
- 2019Bond durability of CFRP laminates-to-steel joints subjected to freeze-thawcitations
- 2018Stainless Steel Bonded to Concrete: an Experimental Assessment using the DIC Techniquecitations
- 2018Experimental and numerical analyses of flexurally-strengthened concrete T-beams with stainless steelcitations
- 2017Bond characteristics of CFRP-to-steel jointscitations
- 2016A New Bonding Technique for the Rehabilitation of Old Timber Floors with CFRP Composites
- 2016Reforço à flexão de pavimentos antigos de madeira com recurso a laminados de fibras de carbono
- 2016Influence of External Compressive Stresses on the Performance of GFRP-to-Concrete Interfaces Subjected to Aggressive Environmentscitations
- 2016Experimental Analysis of Reinforced Concrete Beams Strengthened with Innovative Techniques
- 2014Composites and FRP-Strengthened Beams Subjected to Dry/Wet and Salt Fog Cyclescitations
- 2014On estimates of durability of FRP based on accelerated testscitations
- 2013Influence of temperature cycles on bond between glass fiber-reinforced polymer and concrete
- 2013Influence of Temperature Cycles on Bond between GFRP and Concretecitations
- 2011MATERIAL AND GEOMETRICAL PARAMETERS AFFECTING PUNCHING OF REINFORCED CONCRETE FLAT SLABS WITH ORTHOGONAL REINFORCEMENT
- 2010Flexural behaviour of RC T-beams strengthened with different FRP materials
- 2010Displacement estimation of a RC beam test based on TSS algorithm
Places of action
Organizations | Location | People |
---|
article
Experimental and numerical analyses of flexurally-strengthened concrete T-beams with stainless steel
Abstract
This work presents the results and the main conclusions of a series of experimental tests carried out to evaluate the efficiency of post-installed stainless steel reinforcement on the flexural strengthening of Reinforced Concrete (RC) T-beams when the bonding techniques EBR (Externally Bonded Reinforcement), NSM (Near Surface Mounted) and MA-EBR (EBR with Mechanical Anchors) are used. The RC T-beams were also modelled using a commercial Finite Element (FE) software in order to predict their behaviour until the rupture. For this purpose, a set of single-lap shear tests were also carried out to evaluate the local bond-slip relationships developed within the Stainless Steel (SS)-to-concrete interface. Due to the experimental bond-slip relationships, the numerical simulations were able to predict, with good accuracy, the different behaviours of the RC T-beams until their rupture. Moreover, the different rupture modes observed on all the RC T-beams herein tested were very well estimated by the numerical analyses. The tests of the RC T-beams showed that all the strengthening techniques allowed their flexural stiffness to be increased. Nevertheless, the RC T beams strengthened with the EBR and NSM techniques had premature ruptures, i.e. the rupture in the RC T-beams occurred even before the yielding of their steel reinforcements. The RC T-beam strengthened with the MA-EBR technique showed good ductility and the highest load bearing capacity, which means that the MA-EBR technique is the best bonding technique herein used.