People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Afshan, Sheida
University of Southampton
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (34/34 displayed)
- 2024Low-cycle fatigue behaviour and strain-life model of stainless steel reinforcing barscitations
- 2024Experimental investigation of nonlinear cyclic behavior of circular concrete bridge piers with pitting corrosioncitations
- 2024Testing and numerical modelling of circular stainless steel reinforced concrete columnscitations
- 2023Comparative study on fracture characteristics of carbon and stainless steel bolt materialcitations
- 2023Experimental testing of stainless steel bolt assemblies at elevated temperaturescitations
- 2022Numerical modelling of stainless steel bolted T-stubs in tensioncitations
- 2022Numerical simulation and design of ferritic stainless steel bolted T-stubs in tensioncitations
- 2021Buckling of stainless steel welded I-section columnscitations
- 2021Experimental and numerical investigation of the cyclic response of stainless steel reinforced concrete columnscitations
- 2021Performance of axially restrained carbon and stainless steel perforated beams at elevated temperaturescitations
- 2021Influence of the degree of utilization on the structural behaviour of stainless steel frames subject to fire
- 2021Compressive stress-strain behaviour of stainless steel reinforcing bars with the effect of inelastic bucklingcitations
- 2021Buckling of stainless steel welded I-section columns citations
- 2020Behaviour of stainless and high strength steel bolt assemblies at elevated temperatures - a reviewcitations
- 2019Standardised material properties for numerical parametric studies of stainless steel structures and buckling curves for tubular columnscitations
- 2019Elevated temperature performance of restrained stainless steel beamscitations
- 2019Behaviour and design of stainless steel tubular beam-columns members in fire
- 2018Behaviour of high strength steel columns under fire conditionscitations
- 2017Ultimate capacity of a segmental grey cast iron tunnel lining ring subjected to large deformationscitations
- 2017Material properties and compressive local buckling response of high strength steel square and rectangular hollow sectionscitations
- 2017Elevated temperature material behaviour of high-strength steelcitations
- 2017Structural response and continuous strength method design of slender stainless steel cross-sectionscitations
- 2016Flexural behaviour of hot-finished high strength steel square and rectangular hollow sectionscitations
- 2015Reliability analysis of structural stainless steel design provisionscitations
- 2013The continuous strength method for structural stainless steel designcitations
- 2013Strength enhancements in cold-formed structural sections. Part II: Predictive modelscitations
- 2013Strength enhancements in cold-formed structural sections. Part I: Material testingcitations
- 2013Buckling response of ferritic stainless steel columns at elevated temperatures
- 2013Strength enhancements in cold-formed structural sections — Part I: Material testingcitations
- 2013Experimental study of cold-formed ferritic stainless steel hollow sectionscitations
- 2013Strength enhancements in cold-formed structural sections — Part Icitations
- 2013Strength enhancements in cold-formed structural sections — Part IIcitations
- 2012The continuous strength method for structural stainless steel design
- 2012Predictive models for strength enhancements in cold-formed structural sections
Places of action
Organizations | Location | People |
---|
document
Structural response and continuous strength method design of slender stainless steel cross-sections
Abstract
In current structural stainless steel design codes, local buckling is accounted for through a cross-section classification framework, which is based on an elastic, perfectly-plastic material model, providing consistency with the corresponding treatment of carbon steel cross-sections. Hence, for non-slender cross-sections, the codified design stress is limited to the 0.2% proof stress without considering the pronounced strain hardening exhibited by stainless steels, while for slender cross-sections, the effective width method is employed without considering the beneficial effect of element interaction. Previous comparisons between test results and codified predictions have generally indicated over-conservatism and scatter. This has prompted the development of more efficient design rules, which can reflect better the actual local buckling behaviour and nonlinear material response of stainless steel cross-sections. A deformation-based design approach called the continuous strength method (CSM) has been proposed for the design of stocky cross-sections, which relates the strength of a cross-section to its deformation capacity and employs a bi-linear (elastic, linear hardening) material model to account for strain hardening. In this paper, the scope of the CSM is extended to cover the design of slender stainless steel cross-sections under compression, bending and combined loading, underpinned by and validated against 794 experimental and numerical results. The proposed approach allows for the beneficial effect of element interaction within the cross-section, and is shown to yield a higher level of accuracy and consistency, as well as design efficiency, in the capacity predictions of slender stainless steel cross-sections, compared to the effective width methods employed in the current international design standards. Non-doubly symmetric sections in bending, which may be slender, but still benefit from strain hardening, are also discussed. The reliability of the CSM proposal has been confirmed by means of statistical ...