People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Hordijk, Dick
Delft University of Technology
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (13/13 displayed)
- 2023The role of eigen-stresses on apparent strength and stiffness of normal, high strength, and ultra-high performance fibre reinforced concretecitations
- 2019Strain hardening cementitious composite (SHCC) for crack width control in reinforced concrete beams
- 2018On the Potential of Lattice Type Model for Predicting Shear Capacity of Reinforced Concrete and SHCC Structurescitations
- 2018An Experimental Study on the Transition of Failure Between Flexural and Shear for RC Beams
- 2018Strain hardening cementitious composite (SHCC) layer for the crack width control in reinforced concrete beam
- 2018Brittleness of high-strength lightweight aggregate concrete
- 2018Development and application of an environmentally friendly ductile alkali-activated compositecitations
- 2017Proof load testing of reinforced concrete slab bridges in the Netherlands
- 2016The shear capacity of reinforced concrete members with plain bars
- 2016Acoustic emission study on 50 years old reinforced concrete beams under bending and shear tests
- 2016Towards slender, innovative concrete structures for replacement of existing viaducts
- 2016Probabilistic prediction of the failure mode of the Ruytenschildt Bridgecitations
- 2016Ruytenschildt Bridgecitations
Places of action
Organizations | Location | People |
---|
article
Ruytenschildt Bridge
Abstract
A large number of existing reinforced concrete solid slab bridges in the Netherlands are found to be insufficient for shear upon assessment. However, research has shown additional sources of capacity in slab bridges, increasing their total capacity. Previous testing was limited to half-scale slab specimens cast in the laboratory. To study the full structural behavior of slab bridges, testing to failure of a bridge is necessary. In August 2014, a bridge was tested to failure in two spans. Afterwards, beams were sawn out of the bridge for experimental work in the laboratory and further study. Though calculations with current design provisions showed that the bridge could fail in shear, the field test showed failure in flexure before shear. The experiments on the beams study the transition from flexural to shear failure and the influence of the type of reinforcement on the capacity. The experimental results were compared to predictions of the capacity for the bridge slab and the sawn beams. These comparisons show that the current methods for rating of existing reinforced concrete slab bridges, leading to a sharper assessment, are conservative. It was also found that the application of plain bars instead of deformed bars does not increase the shear capacity of beams.