Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Neves, As

  • Google
  • 1
  • 3
  • 21

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (1/1 displayed)

  • 2013Fatigue analysis of box-girder webs subjected to in-plane shear and transverse bending induced by railway traffic21citations

Places of action

Chart of shared publication
Rocha, Jf
1 / 1 shared
Sousa, C.
1 / 12 shared
Calcada, R.
1 / 17 shared
Chart of publication period
2013

Co-Authors (by relevance)

  • Rocha, Jf
  • Sousa, C.
  • Calcada, R.
OrganizationsLocationPeople

article

Fatigue analysis of box-girder webs subjected to in-plane shear and transverse bending induced by railway traffic

  • Rocha, Jf
  • Sousa, C.
  • Calcada, R.
  • Neves, As
Abstract

The analysis of slender reinforced concrete box-girder webs, in bridge decks, must be carried out considering the effects of in-plane shear and transverse (out-of-plane) bending. In the case of structures subjected to important cyclic loads, such as railway bridge decks, fatigue must also be taken into account. This paper presents a numerical methodology for fatigue analysis of reinforced concrete girder webs, considering the combined effects of in-plane shear and transverse bending. Fatigue lives are calculated by using the damage accumulation method, which makes it possible to analyse variable amplitude stress histories due to real traffic. The main specificity of the proposed methodology lies in the algorithm for calculation of stress histories in the stirrups and in the web concrete. This algorithm is validated through the comparison with experimental results reported in the bibliography, which demonstrates that the proposed approach provides results on the safe side. The interest and practical consequences of employing this methodology in fatigue analyses of new structures are illustrated through the application to a real case study.

Topics
  • impedance spectroscopy
  • fatigue