People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Lund, Erik
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (22/22 displayed)
- 2023Multi-material and thickness optimization of laminated composite structures subject to high-cycle fatiguecitations
- 2023A matter of coursecitations
- 2023A matter of course:Generating optimal manufacturing instructions from a structural layup plan of a wind turbine bladecitations
- 2022Discrete Material and Thickness Optimization of laminated composites using aggregated high-cycle fatigue constraints
- 2021A simple MATLAB draping code for fiber-reinforced composites with application to optimization of manufacturing process parameterscitations
- 2019Discrete Material and Thickness Optimization of sandwich structurescitations
- 2017A benchmark study of simulation methods for high-cycle fatigue-driven delamination based on cohesive zone modelscitations
- 2016Post-buckling optimization of composite structures using Koiter's methodcitations
- 2015Simulation Methods for High-Cycle Fatigue-Driven Delamination using Cohesive Zone Models - Fundamental Behavior and Benchmark Studies
- 2014Development of a High-fidelity Experimental Substructure Test Rig for Grid-scored Sandwich Panels in Wind Turbine Bladescitations
- 2014High-fidelity multiaxial testing of composite substructures
- 2013Interlaminar/interfiber Failure of Unidirectional GFRP used for Wind Turbine Blades
- 2013Asymptotic Sampling for reliability analysis of adhesive bonded stepped lap composite jointscitations
- 2012Fatigue Failure of Sandwich Beams with Wrinkle Defects Used for Wind Turbine Blades
- 2012Investigation of failure mechanisms in GFRP sandwich structures with face sheet wrinkle defects used for wind turbine bladescitations
- 2012Interlaminar/interfiber failure of unidirectional GFRP used for wind turbine blades
- 2012Thickness optimization of laminated composites using the discrete material optimization method
- 2012Assessment of Interlaminar/Interfiber Failure of UD GRFP for Wind Turbine Blades
- 2012Reliability analysis of adhesive bonded scarf jointscitations
- 2012Reliability Analysis of Adhesive Bonded Scarf Jointscitations
- 2011Optimization strategies for discrete multi-material stiffness optimizationcitations
- 2004Large Scale FEM of the effective elastic properties of particle reinforced composites
Places of action
Organizations | Location | People |
---|
article
Asymptotic Sampling for reliability analysis of adhesive bonded stepped lap composite joints
Abstract
Reliability analysis coupled with finite element analysis (FEA) of composite structures is computationally very demanding and requires a large number of simulations to achieve an accurate prediction of the probability of failure with a small standard error. In this paper Asymptotic Sampling, which is a promising and time efficient tool to calculate the probability of failure, is utilized, and a probabilistic model for the reliability analysis of adhesive bonded stepped lap composite joints, representative for the main laminate in a wind turbine blade subjected to static flapwise bending load, is presented. Three dimensional (3D) FEA is used for the structural analysis together with a design equation that is associated with a deterministic code-based design equation where reliability is secured by partial safety factors. The Tsai-Wu and the maximum principal stress failure criteria are used to predict failure in the composite and adhesive layers, respectively, and the results are compared with the target reliability level implicitly used in the wind turbine standard IEC 61400-1. The accuracy and efficiency of Asymptotic Sampling is investigated by comparing the results with predictions obtained using the Monte Carlo simulation technique.Finally, the partial safety factors are calibrated, and it is shown that the methodology can be further applied to general calibration of partial safety factors to be used in deterministic design.