People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Lund, Erik
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (22/22 displayed)
- 2023Multi-material and thickness optimization of laminated composite structures subject to high-cycle fatiguecitations
- 2023A matter of coursecitations
- 2023A matter of course:Generating optimal manufacturing instructions from a structural layup plan of a wind turbine bladecitations
- 2022Discrete Material and Thickness Optimization of laminated composites using aggregated high-cycle fatigue constraints
- 2021A simple MATLAB draping code for fiber-reinforced composites with application to optimization of manufacturing process parameterscitations
- 2019Discrete Material and Thickness Optimization of sandwich structurescitations
- 2017A benchmark study of simulation methods for high-cycle fatigue-driven delamination based on cohesive zone modelscitations
- 2016Post-buckling optimization of composite structures using Koiter's methodcitations
- 2015Simulation Methods for High-Cycle Fatigue-Driven Delamination using Cohesive Zone Models - Fundamental Behavior and Benchmark Studies
- 2014Development of a High-fidelity Experimental Substructure Test Rig for Grid-scored Sandwich Panels in Wind Turbine Bladescitations
- 2014High-fidelity multiaxial testing of composite substructures
- 2013Interlaminar/interfiber Failure of Unidirectional GFRP used for Wind Turbine Blades
- 2013Asymptotic Sampling for reliability analysis of adhesive bonded stepped lap composite jointscitations
- 2012Fatigue Failure of Sandwich Beams with Wrinkle Defects Used for Wind Turbine Blades
- 2012Investigation of failure mechanisms in GFRP sandwich structures with face sheet wrinkle defects used for wind turbine bladescitations
- 2012Interlaminar/interfiber failure of unidirectional GFRP used for wind turbine blades
- 2012Thickness optimization of laminated composites using the discrete material optimization method
- 2012Assessment of Interlaminar/Interfiber Failure of UD GRFP for Wind Turbine Blades
- 2012Reliability analysis of adhesive bonded scarf jointscitations
- 2012Reliability Analysis of Adhesive Bonded Scarf Jointscitations
- 2011Optimization strategies for discrete multi-material stiffness optimizationcitations
- 2004Large Scale FEM of the effective elastic properties of particle reinforced composites
Places of action
Organizations | Location | People |
---|
article
Reliability Analysis of Adhesive Bonded Scarf Joints
Abstract
A probabilistic model for the reliability analysis of adhesive bonded scarfed lap joints subjected to static loading is developed. It is representative for the main laminate in a wind turbine blade subjected to flapwise bending. The structural analysis is based on a three dimensional (3D) finite element analysis (FEA). For the reliability analysis a design equation is considered which is related to a deterministic code-based design equation where reliability is secured by partial safety factors together with characteristic values for the material properties and loads. The failure criteria are formulated using a von Mises, a modified von Mises and a maximum stress failure criterion. The reliability level is estimated for the scarfed lap joint and this is compared with the target reliability level implicitly used in the wind turbine standard IEC 61400-1. A convergence study is performed to validate the FEA model, and a sensitivity analysis on the influence of various geometrical parameters and material properties on the maximum stress is conducted. Because the yield behavior of many polymeric structural adhesives is dependent on both deviatoric and hydrostatic stress components, different ratios of the compressive to tensile adhesive yield stresses in the failure criterion are considered. It is shown that the chosen failure criterion, the scarf angle and the load are significant for the assessment of the probability of failure.