People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Silva, Mag
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (17/17 displayed)
- 2019Bond durability of CFRP laminates-to-steel joints subjected to freeze-thawcitations
- 2017Aging of some GFRP-concrete joints under external pressure
- 2017Bond characteristics of CFRP-to-steel jointscitations
- 2016Influence of External Compressive Stresses on the Performance of GFRP-to-Concrete Interfaces Subjected to Aggressive Environments: An Experimental Analysiscitations
- 2015Factors influencing the performance of externally bonded reinforcement systems of GFRP-to-concrete interfacescitations
- 2015Bond-slip model for FRP-to-concrete bonded joints under external compressioncitations
- 2014An experimental study of GFRP-to-concrete interfaces submitted to humidity cyclescitations
- 2014Composites and FRP-Strengthened Beams Subjected to Dry/Wet and Salt Fog Cyclescitations
- 2014On estimates of durability of FRP based on accelerated testscitations
- 2013Bond-slip on CFRP/GFRP-to-concrete joints subjected to moisture, salt fog and temperature cyclescitations
- 2013Modelling GFRP-to-concrete joints with interface finite elements with rupture based on the Mohr-Coulomb criterioncitations
- 2013A smeared crack analysis of reinforced concrete T-beams strengthened with GFRP compositescitations
- 2013Nonlinear numerical analysis of the debonding failure process of FRP-to-concrete interfacescitations
- 2012Double shear tests to evaluate the bond strength between GFRP/concrete elementscitations
- 2010Effects of exposure to saline humidity on bond between GFRP and concretecitations
- 2010Monotonic axial behavior and modelling of RC circular columns confined with CFRPcitations
- 2006Size and relative stiffness effects on compressive failure of concrete columns wrapped with glass FRPcitations
Places of action
Organizations | Location | People |
---|
article
Monotonic axial behavior and modelling of RC circular columns confined with CFRP
Abstract
The retrofit of reinforced concrete columns with FRP jackets has received considerable attention in recent years. The advantages of this technique compared to other similar techniques include the high strength-weight and stiffness-weight ratios of FRP (Fibre Reinforced Plastics), the strength and ductility increase of RC columns confined with FRP jackets as well as the fact that FRP external shells prevent or mitigate environmental degradation of the concrete and consequent corrosion of the steel reinforcement. Furthermore, this method also reduces the column transversal deformation and prevents the buckling of longitudinal reinforcement. Twenty five experimental tests were carried out on reinforced concrete columns confined with CFRP composites, and subjected to axial monotonic compression. In order to evaluate the influence of several parameters on the mechanical behavior of the columns, the height of the columns was maintained, while changing other parameters: the diameter of the columns, the type of material (plain or reinforced concrete), the steel hoop spacing of the RC columns and the number of CFRP layers. Predictive equations, based on the experimental analysis, are proposed to estimate the compressive strength of the confined concrete, the maximum axial load and the axial or the lateral failure strain of circular RC columns jacketed with CFRP. A stress-strain model for CFRP confined concrete in compression, which considers the effect of the CFRP and the transversal reinforcement on the confined compressive strength of the column is also proposed. The curves, axial load versus axial or lateral strain of the RC column, are simulated based on the stress-strain model and include the longitudinal reinforcement effect. The results demonstrate that the model and the predictive equations represent very well the axial compression behavior of RC circular columns confined with CFRP. The applicability of this model to a large spectrum of RC column dimensions is its main advantage.