Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Jensen, Uffe G.

  • Google
  • 2
  • 3
  • 39

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (2/2 displayed)

  • 2010Shear Strength of Reinforced Concrete Piers and Piles with Hollow Circular Cross Section10citations
  • 2010Shear strength of heavily reinforced concrete members with circular cross section29citations

Places of action

Chart of shared publication
Hoang, Linh Cao
2 / 31 shared
Fabrin, Lars S.
1 / 1 shared
Joergensen, Henrik B.
1 / 2 shared
Chart of publication period
2010

Co-Authors (by relevance)

  • Hoang, Linh Cao
  • Fabrin, Lars S.
  • Joergensen, Henrik B.
OrganizationsLocationPeople

article

Shear strength of heavily reinforced concrete members with circular cross section

  • Fabrin, Lars S.
  • Joergensen, Henrik B.
  • Jensen, Uffe G.
  • Hoang, Linh Cao
Abstract

Reinforced concrete members with circular cross section are used frequently in practice. Despite this fact, only limited research on the shear behaviour of such structural members has been published. Further, code rules and guidelines for shear design of circular concrete members are almost non-existent. Most code rules are based on shear models for rectangular members. The shear behaviour of circular members is, however, quite different from that of rectangular members. The difference is especially pronounced for members containing high shear reinforcement percentages. This paper presents the results of a test series on heavily shear reinforced circular concrete members. The specimens had shear reinforcement percentages up to more than three times the maximum percentage found in existing tests. The test results indicate that it is possible to obtain shear strengths which exceed the upper limit usually imposed on rectangular members. The test results are compared with a recently developed plasticity-based shear model for circular members. Satisfactory agreement was found. Comparisons were also made with calculations using the AASHTO LRFD design code. It was found that the AASHTO LRFD design code gives reasonable results for members with small amounts of shear reinforcement while it underestimates the shear strength for heavily shear reinforced members.

Topics
  • impedance spectroscopy
  • strength
  • plasticity