People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Mosleh, Yasmine
Delft University of Technology
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (33/33 displayed)
- 2024Time to failure analysis of wood adhesives
- 2024Interlaminar fracture behaviour of emerging laminated-pultruded CFRP plates for wind turbine bladescitations
- 2024Effect Of Moisture Cycling Duration And Temperature On The Strengthening And Stiffening Of Cycled Flax Fibres
- 2024Time to failure analysis of wood adhesives: a non-linear approach based on chemical reaction kinetics
- 2024Designing Stiff And Tough Biocomposites By Hybridization Of Flax And Silk Fibres
- 2024FLAx-REinforced Aluminum (FLARE)citations
- 2024Pre-straining as an effective strategy to mitigate ratcheting during fatigue in flax FRP composites for structural applications
- 2024Enhancing Fatigue Performance Of Structural Biocomposites By Pre-Straining And Pre-Creeping Methods
- 2024Interlaminar Fracture Behaviour Of Emerging Laminated-Pultruded Cfrp Plates For Wind Turbine Blades Under Different Loading Modes
- 2023Ductile woven silk fibre thermoplastic composites with quasi-isotropic strengthcitations
- 2023Damage tolerance in ductile woven silk fibre thermoplastic composites
- 2023Damage tolerance in ductile woven silk fibre thermoplastic composites
- 2023Flax fibre metal laminates (FLARE): A bio-based FML alternative combining impact resistance and vibration damping?
- 2023Effects of different joint wall lengths on in-plane compression properties of 3D braided jute/epoxy composite honeycombscitations
- 2023Highly Impact-Resistant Silk Fiber Thermoplastic Compositescitations
- 2022Smart material and design solutions for protective headgears in linear and oblique impacts: Column/matrix composite liner to mitigate rotational accelerationscitations
- 2022Smart material and design solutions for protective headgears in linear and oblique impactscitations
- 2022Prediction of the equilibrium moisture content based on the chemical composition and crystallinity of natural fibrescitations
- 2021Ductile woven silk fibre thermoplastic composites with quasi-isotropic strengthcitations
- 2021The photostability and peel strength of ethylene butyl acrylate copolymer blends for use in conservation of cultural heritagecitations
- 2020The Influence of Loading, Temperature and Relative Humidity on Adhesives for Canvas Liningcitations
- 2020The Influence of Loading, Temperature and Relative Humidity on Adhesives for Canvas Liningcitations
- 2018Effect of polymer foam anisotropy on energy absorption during combined shear-compression load
- 2018Anisotropic composite structure, liner and helmet comprising such a structure and use of and method of producing such a structure
- 2018Decoupling shear and compression properties in composite polymer foams by introducing anisotropy at macro level
- 2015Penetration impact resistance of tough novel steel fibre-reinforced polymer composites
- 2015Penetration impact resistance of novel tough steel fibre-reinforced polymer compositescitations
- 2014TPU/PCL/nanomagnetite ternary shape memory composites: Studies on their Thermal, Dynamic-Mechanical, Rheological, and Electrical Properties
- 2014Combined Shear-Compression Test to Characterize Foams under Oblique Loading for Bicycle Helmets
- 2014Characterisation of EPS Foams under Combined Shear-Compression Loading
- 2014Combined shear-compression test to characerize foams under oblique loading for bicycle helmets
- 2010Efficient Dispersion of Magnetite Nanoparticles in the Polyurethane Matrix Through Solution Mixing and Investigation of the Nanocomposite Properties
- 2010Efficient dispersion of magnetite nanoparticles in polyurethane matrix through solution mixing and investigation of the nanocomposite properties
Places of action
Organizations | Location | People |
---|
article
Interlaminar fracture behaviour of emerging laminated-pultruded CFRP plates for wind turbine blades
Abstract
Laminated pultruded composite plates are gaining interest for use in wind turbine blades due to their excellent structural performance with affordable cost. However, there is limited understanding of their fracture properties. The present work explores the interlaminar fracture behaviour of pultruded composite plates, bonded through resin infusion, to form thick CFRP structures. Mode-I, −II, and mixed-mode (I/II) tests were performed to obtain fracture properties at different mixed-mode ratios. Mode I crack propagation exhibits stick–slip behaviour, resulting in brittle failure in a few steps, while mode II provides more stable crack propagation along with cohesive failure. The mixed-mode fracture patterns follow the trend of the mode-mix ratios, in which higher mode-mix ratios (more mode II) induce more stable crack propagation. Benzeggagh-Kenane and power law criteria were compared regarding their prediction of crack initiation toughness given a mode mix ratio, and a linear relation between the mixed mode I/II fracture toughness components could exist at interfaces of laminated pultruded plates. Meanwhile, applicability of testing standards and the effect of manufacturing-induced defects on fracture properties are thoroughly discussed. The results show that existing standards provide sufficient support for characterising fracture properties of bonded pultruded plates; and that manufacturing-induced defects can be detrimental to crack propagation and cause more brittle behaviour in mode I dominant cases, while beneficial effect of defects by toughening the interface was exhibited in mode II dominant cases.