Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Monticeli, Francisco Maciel

  • Google
  • 3
  • 6
  • 9

Delft University of Technology

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (3/3 displayed)

  • 2024The effect of fibre orientation on fatigue crack propagation in CFRP: Finite fracture mechanics modelling for open-hole configuration6citations
  • 2024Interlaminar fracture behaviour of emerging laminated-pultruded CFRP plates for wind turbine blades3citations
  • 2024Interlaminar Fracture Behaviour Of Emerging Laminated-Pultruded Cfrp Plates For Wind Turbine Blades Under Different Loading Modescitations

Places of action

Chart of shared publication
Donadon, Maurício Vicente
1 / 6 shared
Fuga, Felipe Ruivo
1 / 1 shared
Arbelo, Mariano Andrés
1 / 5 shared
Pascoe, John-Alan
2 / 13 shared
Li, Xi
2 / 10 shared
Mosleh, Yasmine
2 / 33 shared
Chart of publication period
2024

Co-Authors (by relevance)

  • Donadon, Maurício Vicente
  • Fuga, Felipe Ruivo
  • Arbelo, Mariano Andrés
  • Pascoe, John-Alan
  • Li, Xi
  • Mosleh, Yasmine
OrganizationsLocationPeople

article

Interlaminar fracture behaviour of emerging laminated-pultruded CFRP plates for wind turbine blades

  • Pascoe, John-Alan
  • Monticeli, Francisco Maciel
  • Li, Xi
  • Mosleh, Yasmine
Abstract

Laminated pultruded composite plates are gaining interest for use in wind turbine blades due to their excellent structural performance with affordable cost. However, there is limited understanding of their fracture properties. The present work explores the interlaminar fracture behaviour of pultruded composite plates, bonded through resin infusion, to form thick CFRP structures. Mode-I, −II, and mixed-mode (I/II) tests were performed to obtain fracture properties at different mixed-mode ratios. Mode I crack propagation exhibits stick–slip behaviour, resulting in brittle failure in a few steps, while mode II provides more stable crack propagation along with cohesive failure. The mixed-mode fracture patterns follow the trend of the mode-mix ratios, in which higher mode-mix ratios (more mode II) induce more stable crack propagation. Benzeggagh-Kenane and power law criteria were compared regarding their prediction of crack initiation toughness given a mode mix ratio, and a linear relation between the mixed mode I/II fracture toughness components could exist at interfaces of laminated pultruded plates. Meanwhile, applicability of testing standards and the effect of manufacturing-induced defects on fracture properties are thoroughly discussed. The results show that existing standards provide sufficient support for characterising fracture properties of bonded pultruded plates; and that manufacturing-induced defects can be detrimental to crack propagation and cause more brittle behaviour in mode I dominant cases, while beneficial effect of defects by toughening the interface was exhibited in mode II dominant cases.

Topics
  • impedance spectroscopy
  • crack
  • composite
  • resin
  • fracture toughness