People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Sluys, Bert
Delft University of Technology
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (27/27 displayed)
- 2024Geometric effects on impact mitigation in architected auxetic metamaterialscitations
- 2024Modeling of progressive high-cycle fatigue in composite laminates accounting for local stress ratioscitations
- 2023A numerical framework for simulating progressive failure in composite laminates under high-cycle fatigue loadingcitations
- 2022Verification, validation, and parameter study of a computational model for corrosion pit growth adopting the level-set method.citations
- 2022Modelling of capillary water absorption in sound and cracked concrete using a dual-lattice approachcitations
- 2022Verification, validation, and parameter study of a computational model for corrosion pit growth adopting the level-set method. Part IIcitations
- 2021Calcium phosphate cement reinforced with poly (vinyl alcohol) fiberscitations
- 2021A cohesive XFEM model for simulating fatigue crack growth under various load conditionscitations
- 2020A thermo-hydro-mechanical model for energy piles under cyclic thermal loadingcitations
- 2020An experimental and numerical investigation of sphere impact on alumina ceramiccitations
- 2019A combined experimental/numerical investigation on hygrothermal aging of fiber-reinforced compositescitations
- 2019Simulating brittle and ductile response of alumina ceramics under dynamic loadingcitations
- 2019Dynamic characterization of adobe in compressioncitations
- 2019A dispersive homogenization model for composites and its RVE existencecitations
- 2019A cohesive XFEM model for simulating fatigue crack growth under mixed-mode loading and overloadingcitations
- 2019Efficient micromechanical analysis of fiber-reinforced composites subjected to cyclic loading through time homogenization and reduced-order modelingcitations
- 2019Dynamic simulation of masonry materials at different loading velocities using an updated damage delay algorithm of regularization
- 2018Cohesive zone and interfacial thick level set modeling of the dynamic double cantilever beam test of composite laminatecitations
- 2018Deformation to fracture evolution of a flexible polymer under split Hopkinson pressure bar loadingcitations
- 2018A viscosity regularized plasticity model for ceramicscitations
- 2017Hygrothermal ageing behaviour of a glass/epoxy composite used in wind turbine bladescitations
- 2017Thick-level-set modeling of the dynamic double cantilever beam test
- 2017A numerical study on crack branching in quasi-brittle materials with a new effective rate-dependent nonlocal damage modelcitations
- 2017On the modelling of mixed-mode discrete fracturecitations
- 2017Combined experimental/numerical investigation of directional moisture diffusion in glass/epoxy compositescitations
- 2016Simulation of dynamic behavior of quasi-brittle materials with new rate dependent damage modelcitations
- 2016Compressive response of multiple-particles-polymer systems at various strain ratescitations
Places of action
Organizations | Location | People |
---|
article
A numerical framework for simulating progressive failure in composite laminates under high-cycle fatigue loading
Abstract
<p>In this work, a recently proposed high-cycle fatigue cohesive zone model, which covers crack initiation and propagation with limited input parameters, is embedded in a robust and efficient numerical framework for simulating progressive failure in composite laminates under fatigue loading. The fatigue cohesive zone model is enhanced with an implicit time integration scheme of the fatigue damage variable which allows for larger cycle increments and more efficient analyses. The method is combined with an adaptive strategy for determining the cycle increment based on global convergence rates. Moreover, a consistent material tangent stiffness matrix has been derived by fully linearizing the underlying mixed-mode quasi-static model and the fatigue damage update. The enhanced fatigue cohesive zone model is used to describe matrix cracking and delamination in laminates. In order to allow for matrix cracks to initiate at arbitrary locations and to avoid complex and costly mesh generation, the phantom node version of the eXtended finite element method (XFEM) is employed. For the insertion of new crack segments, an XFEM fatigue crack insertion criterion is presented, which is consistent with the fatigue cohesive zone formulation. It is shown with numerical examples that the improved fatigue damage update enhances the accuracy, efficiency and robustness of the numerical simulations significantly. The numerical framework is applied to the simulation of progressive fatigue failure in an open-hole [±45]-laminate. It is demonstrated that the numerical model is capable of accurately and efficiently simulating the complete failure process from distributed damage to localized failure.</p>