Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Sluys, Bert

  • Google
  • 27
  • 37
  • 607

Delft University of Technology

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (27/27 displayed)

  • 2024Geometric effects on impact mitigation in architected auxetic metamaterials10citations
  • 2024Modeling of progressive high-cycle fatigue in composite laminates accounting for local stress ratios2citations
  • 2023A numerical framework for simulating progressive failure in composite laminates under high-cycle fatigue loading9citations
  • 2022Verification, validation, and parameter study of a computational model for corrosion pit growth adopting the level-set method.5citations
  • 2022Modelling of capillary water absorption in sound and cracked concrete using a dual-lattice approach16citations
  • 2022Verification, validation, and parameter study of a computational model for corrosion pit growth adopting the level-set method. Part II2citations
  • 2021Calcium phosphate cement reinforced with poly (vinyl alcohol) fibers14citations
  • 2021A cohesive XFEM model for simulating fatigue crack growth under various load conditions17citations
  • 2020A thermo-hydro-mechanical model for energy piles under cyclic thermal loading25citations
  • 2020An experimental and numerical investigation of sphere impact on alumina ceramic19citations
  • 2019A combined experimental/numerical investigation on hygrothermal aging of fiber-reinforced composites46citations
  • 2019Simulating brittle and ductile response of alumina ceramics under dynamic loading27citations
  • 2019Dynamic characterization of adobe in compression4citations
  • 2019A dispersive homogenization model for composites and its RVE existence10citations
  • 2019A cohesive XFEM model for simulating fatigue crack growth under mixed-mode loading and overloading44citations
  • 2019Efficient micromechanical analysis of fiber-reinforced composites subjected to cyclic loading through time homogenization and reduced-order modeling20citations
  • 2019Dynamic simulation of masonry materials at different loading velocities using an updated damage delay algorithm of regularizationcitations
  • 2018Cohesive zone and interfacial thick level set modeling of the dynamic double cantilever beam test of composite laminate35citations
  • 2018Deformation to fracture evolution of a flexible polymer under split Hopkinson pressure bar loading16citations
  • 2018A viscosity regularized plasticity model for ceramics19citations
  • 2017Hygrothermal ageing behaviour of a glass/epoxy composite used in wind turbine blades122citations
  • 2017Thick-level-set modeling of the dynamic double cantilever beam testcitations
  • 2017A numerical study on crack branching in quasi-brittle materials with a new effective rate-dependent nonlocal damage model50citations
  • 2017On the modelling of mixed-mode discrete fracture15citations
  • 2017Combined experimental/numerical investigation of directional moisture diffusion in glass/epoxy composites39citations
  • 2016Simulation of dynamic behavior of quasi-brittle materials with new rate dependent damage model7citations
  • 2016Compressive response of multiple-particles-polymer systems at various strain rates34citations

Places of action

Chart of shared publication
Weerheijm, J.
7 / 34 shared
Boom, S. J. Van Den
1 / 1 shared
Gärtner, Til
1 / 1 shared
Hofman, P.
2 / 3 shared
Fayezioghani, Amir
2 / 2 shared
Dekker, R.
2 / 10 shared
Singla, Anmol
1 / 1 shared
Šavija, Branko
1 / 88 shared
Romero Rodriguez, Claudia
1 / 17 shared
Kucko, Nathan W.
1 / 3 shared
Goudarzi, Mohsen
1 / 1 shared
Paknahad, Ali
1 / 2 shared
Leeuwenburgh, Sander C. G.
1 / 9 shared
Dekker, Richard
2 / 2 shared
Maljaars, J.
2 / 19 shared
Schreppers, G. M. A.
1 / 2 shared
Al-Khoury, Rafid
1 / 2 shared
Musivand Arzanfudi, Mehdi
1 / 1 shared
Simons, E. C.
3 / 5 shared
Toussaint, G.
1 / 1 shared
Raijmaekers, S.
3 / 9 shared
Lahuerta, F.
1 / 4 shared
Rocha, Iuri
4 / 10 shared
Mikkelsen, L. P.
1 / 7 shared
Nijssen, R. P. L.
3 / 8 shared
Koene, L.
1 / 3 shared
Weerheijm, Jaap
3 / 3 shared
Solomos, G.
1 / 4 shared
Peroni, M.
1 / 5 shared
Piani, Tiziano Li
2 / 2 shared
Liu, Yaolu
3 / 3 shared
Fan, J. T.
1 / 4 shared
Pereira, L. F. Magalhaes
1 / 1 shared
Alfaiate, J.
1 / 2 shared
Fischer, H. R.
1 / 30 shared
Pereira, Luis Magalhaes
1 / 1 shared
Fan, Jitang
1 / 1 shared
Chart of publication period
2024
2023
2022
2021
2020
2019
2018
2017
2016

Co-Authors (by relevance)

  • Weerheijm, J.
  • Boom, S. J. Van Den
  • Gärtner, Til
  • Hofman, P.
  • Fayezioghani, Amir
  • Dekker, R.
  • Singla, Anmol
  • Šavija, Branko
  • Romero Rodriguez, Claudia
  • Kucko, Nathan W.
  • Goudarzi, Mohsen
  • Paknahad, Ali
  • Leeuwenburgh, Sander C. G.
  • Dekker, Richard
  • Maljaars, J.
  • Schreppers, G. M. A.
  • Al-Khoury, Rafid
  • Musivand Arzanfudi, Mehdi
  • Simons, E. C.
  • Toussaint, G.
  • Raijmaekers, S.
  • Lahuerta, F.
  • Rocha, Iuri
  • Mikkelsen, L. P.
  • Nijssen, R. P. L.
  • Koene, L.
  • Weerheijm, Jaap
  • Solomos, G.
  • Peroni, M.
  • Piani, Tiziano Li
  • Liu, Yaolu
  • Fan, J. T.
  • Pereira, L. F. Magalhaes
  • Alfaiate, J.
  • Fischer, H. R.
  • Pereira, Luis Magalhaes
  • Fan, Jitang
OrganizationsLocationPeople

article

A numerical framework for simulating progressive failure in composite laminates under high-cycle fatigue loading

  • Sluys, Bert
  • Hofman, P.
Abstract

<p>In this work, a recently proposed high-cycle fatigue cohesive zone model, which covers crack initiation and propagation with limited input parameters, is embedded in a robust and efficient numerical framework for simulating progressive failure in composite laminates under fatigue loading. The fatigue cohesive zone model is enhanced with an implicit time integration scheme of the fatigue damage variable which allows for larger cycle increments and more efficient analyses. The method is combined with an adaptive strategy for determining the cycle increment based on global convergence rates. Moreover, a consistent material tangent stiffness matrix has been derived by fully linearizing the underlying mixed-mode quasi-static model and the fatigue damage update. The enhanced fatigue cohesive zone model is used to describe matrix cracking and delamination in laminates. In order to allow for matrix cracks to initiate at arbitrary locations and to avoid complex and costly mesh generation, the phantom node version of the eXtended finite element method (XFEM) is employed. For the insertion of new crack segments, an XFEM fatigue crack insertion criterion is presented, which is consistent with the fatigue cohesive zone formulation. It is shown with numerical examples that the improved fatigue damage update enhances the accuracy, efficiency and robustness of the numerical simulations significantly. The numerical framework is applied to the simulation of progressive fatigue failure in an open-hole [±45]-laminate. It is demonstrated that the numerical model is capable of accurately and efficiently simulating the complete failure process from distributed damage to localized failure.</p>

Topics
  • impedance spectroscopy
  • simulation
  • crack
  • fatigue
  • composite