Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Kushvaha, V.

  • Google
  • 2
  • 3
  • 38

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (2/2 displayed)

  • 2023Microstructural image based convolutional neural networks for efficient prediction of full-field stress maps in short fiber polymer composites23citations
  • 2022Experimental data-driven uncertainty quantification for the dynamic fracture toughness of particulate polymer composites15citations

Places of action

Chart of shared publication
Gupta, S.
1 / 15 shared
Mukhopadhyay, Tanmoy
2 / 43 shared
Sharma, A.
1 / 38 shared
Chart of publication period
2023
2022

Co-Authors (by relevance)

  • Gupta, S.
  • Mukhopadhyay, Tanmoy
  • Sharma, A.
OrganizationsLocationPeople

article

Experimental data-driven uncertainty quantification for the dynamic fracture toughness of particulate polymer composites

  • Sharma, A.
  • Kushvaha, V.
  • Mukhopadhyay, Tanmoy
Abstract

This paper presents an experimental investigation supported by data-driven approaches concerning the influence of critical stochastic effects on the dynamic fracture toughness of glass-filled epoxy composites using a computationally efficient framework of uncertainty quantification. Three different shapes of glass particles are considered including rod, spherical and flaky shapes with coupled stochastic variations in aspect ratio, dynamic elastic modulus and volume fraction. An artificial neural network based surrogate assisted Monte Carlo simulation is carried out here in conjunction with advanced experimental techniques like digital image correlation and scanning electron microscopy to quantify the uncertainty and sensitivity associated with the dynamic fracture toughness of composites in terms of stress intensity factor under dynamic impact. The study reveals that the pre-crack initiation time regime shows the most prominent effect of uncertainty. Additionally, rod shape and the aspect ratio are the most sensitive filler type and input parameter respectively for characterizing dynamic fracture toughness. Here the quantitative results based on large-scale data-driven approaches convincingly demonstrate using a computational mapping between the stochastic input and output parameter spaces that the effect of uncertainty gets pronounced significantly while propagating from the compound source level to the impact responses. Such outcomes based on experimental data essentially bring us to the realization that quantification of uncertainty is of utmost importance for developing a reliable and practically relevant inclusive analysis and design framework for the dynamic fracture of particulate composites. With limited literature available on the determination of fracture toughness considering inertial effects, the present work demonstrates a novel and insightful experimental approach for uncertainty quantification and sensitivity analysis of dynamic fracture toughness of particulate polymer composites based on ...

Topics
  • impedance spectroscopy
  • compound
  • polymer
  • scanning electron microscopy
  • simulation
  • glass
  • glass
  • crack
  • composite
  • fracture toughness
  • impact response