People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Larrosa, Nicolas O.
University of Bristol
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (21/21 displayed)
- 2024Corrosion mechanisms of plasma welded Nickel aluminium bronze immersed in seawatercitations
- 2024Modelling the Effect of Residual Stresses on Damage Accumulation Using a Coupled Crystal Plasticity Phase Field Fracture Approach
- 2024Cohesive zone modelling of hydrogen environmentally assisted cracking for double cantilever beam samples of 7xxx aluminium alloys
- 2023The role of corrosion pit topography on stress concentration
- 2023Investigation of the effect of pitting corrosion on the fatigue strength degradation of structural steel using a short crack modelcitations
- 2023Investigation of the effect of pitting corrosion on the fatigue strength degradation of structural steel using a short crack modelcitations
- 2022Development of a microstructural cohesive zone model for intergranular hydrogen environmentally assisted crackingcitations
- 2022Development of a microstructural cohesive zone model for intergranular hydrogen environmentally assisted crackingcitations
- 2022Sizing limitations of ultrasonic array images for non-sharp defects and their impact on structural integrity assessmentscitations
- 2022The Role of Surface Roughness on Pitting Corrosion Initiation in Nickel Aluminium Bronzes in Aircitations
- 2020Pit to crack transition and corrosion fatigue lifetime reduction estimations by means of a short crack microstructural modelcitations
- 2020Pit to crack transition and corrosion fatigue lifetime reduction estimations by means of a short crack microstructural modelcitations
- 2020Hydrogen environmentally assisted cracking during static loading of AA7075 and AA7449citations
- 2020Hydrogen environmentally assisted cracking during static loading of AA7075 and AA7449citations
- 2018Linking microstructure and processing defects to mechanical properties of selectively laser melted AlSi10Mg alloycitations
- 2018Corrosion-fatiguecitations
- 2017A transferability approach for reducing excessive conservatism in fracture assessmentscitations
- 2016Ductile fracture modelling and J-Q fracture mechanicscitations
- 2016Blunt defect assessment in the framework of the failure assessment diagramcitations
- 2015Characterization of the effect of notch bluntness on hydrogen embrittlement and fracture behavior using fe analyses
- 2015Fatigue life estimation of pitted specimens by means of an integrated fracture mechanics approachcitations
Places of action
Organizations | Location | People |
---|
article
Development of a microstructural cohesive zone model for intergranular hydrogen environmentally assisted cracking
Abstract
During the initial stages of hydrogen environmentally assisted cracking (HEAC), including crack incubation, initiation and microstructurally short cracking, the geometrical configuration of the microstructure greatly influences the crack growth behaviour. Therefore, there is a big incentive to generate a model which can replicate intergranular HEAC at a microstructural scale. This report provides a general framework to implement a microstructural intergranular HEAC model by using a cohesive zone approach in Abaqus. The parameters of the phenomenological model were fitted by using in-situ synchrotron tomography observations of crack initiation and propagation during HEAC of AA7449-T7651. After fitting the parameters, the real HEAC behaviour of the aluminium alloy 7449-T7651 has been replicated accurately. Several characteristic HEAC features were achieved, including crack segmentation, preferential cracking along grain boundaries with a high resolved normal stress and cracks slowing down at grain boundary triple junctions. Comparisons with experimental observations show the suitability of this approach for the prognosis of crack initiation and propagation at a microstructural scale under HEAC conditions.