People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Selvaraj, Jagan
University of Bristol
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (8/8 displayed)
- 2025A localised continuum damage mechanics model for fibre failure in explicit integration
- 2024Build Orientation-Driven Anisotropic Fracture Behaviour in Polymer Parts Fabricated by Powder Bed Fusion
- 2024Build Orientation-Driven Anisotropic Fracture Behaviour in Polymer Parts Fabricated by Powder Bed Fusion
- 2024Adaptive and variable model order reduction method for fracture modelling using explicit time integrationcitations
- 2023Multiscale modelling of strongly heterogeneous materials using geometry informed clusteringcitations
- 2023Efficient sublaminate-scale impact damage modelling with higher-order elements in explicit integrationcitations
- 2022Mesh independent modelling of tensile failure in laminates using mixed-time integration in explicit analysiscitations
- 2021Modelling delaminations using adaptive cohesive segments with rotations in dynamic explicit analysiscitations
Places of action
Organizations | Location | People |
---|
article
Modelling delaminations using adaptive cohesive segments with rotations in dynamic explicit analysis
Abstract
Multiple delamination planes can form when a composite structure is subjected to out-of-plane stresses during static over-loading or impact loading. Numerical modelling of such events is often prohibitively expensive because large numbers of cracks can co-exist and interact, and fracture models usually affect the time step size in explicit solutions. Here a new method called Adaptive Mesh Segmentation is proposed, which introduces segmentation ‘on-the-fly’ in meshes of quadratic finite elements with six degrees of freedom per node, without any intervention from the user and without any reductions in time step size for solution stability. A novel cohesive formulation with rotational degrees of freedom is introduced which increases the resolution of the numerical cohesive zone and allows the use of relatively coarse meshes. Once a critical stress criterion is met, new degrees of freedom are added at element boundaries to model strong discontinuities. A new moment–damage relationship is proposed to link the discontinuity in rotational degrees of freedom with the cohesive zone law which is translational by definition. A method for initiating cohesive tractions and moments with minimal disturbances to the surrounding stress field is also presented. Finally, the model is applied in the analysis of composite delamination benchmarks using relatively coarse meshes and modest model sizes. Considerable improvements in accuracy are observed when compared to conventional methods.<br/><br/>