People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Sonne, Mads S.
Technical University of Denmark
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (19/19 displayed)
- 2020Thermo-chemical-mechanical simulation of low temperature nitriding of austenitic stainless steel; inverse modelling of surface reaction ratescitations
- 2019A Characterization Study Relating Cross-Sectional Distribution of Fiber Volume Fraction and Permeability
- 2019Numerical Modelling of Heat Transfer using the 3D-ADI-DG Method - with Application for Pultrusion.
- 2019Fiber segmentation from 3D X-ray computed tomography of composites with continuous textured glass fibre yarns
- 2018Multiphysics modelling of manufacturing processes: A reviewcitations
- 2018Numerical Modelling of Mechanical Anisotropy during Low Temperature Nitriding of Stainless Steel
- 2018Uncovering the local inelastic interactions during manufacture of ductile cast iron: How the substructure of the graphite particles can induce residual stress concentrations in the matrixcitations
- 2018Thermomechanical Modelling of Direct-Drive Friction Welding Applying a Thermal Pseudo Mechanical Model for the Generation of Heatcitations
- 2017A FEM based methodology to simulate multiple crack propagation in friction stir weldscitations
- 2017Integrated Computational Modelling of Thermochemical Surface Engineering of Stainless Steel
- 2016Improvement in Surface Characterisitcs of Polymers for Subsequent Electroless Plating Using Liquid Assisted Laser Processingcitations
- 2016Free-form nanostructured tools for plastic injection moulding
- 2016Determination of stamp deformation during imprinting on semi-spherical surfaces
- 2016Multiple Crack Growth Prediction in AA2024-T3 Friction Stir Welded Joints, Including Manufacturing Effectscitations
- 2015Defining Allowable Physical Property Variations for High Accurate Measurements on Polymer Parts.citations
- 2015Modelling residual stresses in friction stir welding of Al alloys - a review of possibilities and future trendscitations
- 2015Comparison of residual stresses in sand- and chill casting of ductile cast iron wind turbine main shaftscitations
- 2015Modelling the residual stresses and microstructural evolution in Friction Stir Welding of AA2024-T3 including the Wagner-Kampmann precipitation model
- 2013The effect of hardening laws and thermal softening on modeling residual stresses in FSW of aluminum alloy 2024-T3citations
Places of action
Organizations | Location | People |
---|
article
A FEM based methodology to simulate multiple crack propagation in friction stir welds
Abstract
In this work a numerical procedure, based on a finite element approach, is proposed to simulate multiple three-dimensional crack propagation in a welded structure. Cracks are introduced in a friction stir welded AA2024-T3 butt joint, affected by a process-induced residual stress scenario. The residual stress field was inferred by a thermo-mechanical FEM simulation of the process, considering temperature dependent elastic-plastic material properties, material softening and isotropic hardening. Afterwards, cracks introduced in the selected location of FEM computational domain allow stress redistribution and fatigue crack growth. The proposed approach has been validated by comparison with numerical outcomes provided by a consolidated FEM-DBEM procedure, available in literature. The discussed procedures are substantially equivalent in terms of SIFs evaluation along the crack front at the cracks insertion, as well as with respect to crack sizes measured in three different points for each propagation step. This FEMbased approach simulates the fatigue crack propagation by considering accurately the residual stress field generated by plastic deformations imposed on a structural component and has general validity.