People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Pini, Tommaso
Sapienza University of Rome
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (10/10 displayed)
- 2024A periodic micromechanical model for the rate- and temperature-dependent behavior of unidirectional carbon fiber-reinforced PVDFcitations
- 2021Deformation and failure kinetics of polyvinylidene fluoride: Influence of crystallinitycitations
- 2021Deformation and failure kinetics of polyvinylidene fluoride: Influence of crystallinitycitations
- 2019Damage mechanisms in a toughened acrylic resincitations
- 2018Fracture toughness of acrylic resinscitations
- 2018Matrix toughness transfer and fibre bridging laws in acrylic resin based CF compositescitations
- 2018Fracture toughness of acrylic resins: Viscoelastic effects and deformation mechanismscitations
- 2017Fracture initiation and propagation in unidirectional CF composites based on thermoplastic acrylic resinscitations
- 2016Time dependent fracture behaviour of a carbon fibre composite based on a (rubber toughened) acrylic polymercitations
- 2016Time dependent fracture behaviour of a carbon fibre composite based on a (rubber toughened) acrylic polymercitations
Places of action
Organizations | Location | People |
---|
article
Fracture initiation and propagation in unidirectional CF composites based on thermoplastic acrylic resins
Abstract
<p>The fracture behaviour of continuous unidirectional carbon fibre composite materials prepared adopting two, one plain and one rubber toughened, thermoplastic acrylic resins as matrices was investigated as a function of temperature and displacement rate. The contributions to fracture toughness of composites given by the matrix and the fibre related mechanisms was analysed by comparing results obtained at crack initiation and during crack propagation stages. It was verified that the transfer of matrix toughness into the composite is only partial when the matrix process zone size is comparable to the interlaminar matrix layer thickness. The effectiveness of fibre bridging mechanism was found to be related to the interfacial strength between the matrix and the fibre.</p>