People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Benedictus, Rinze
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (27/27 displayed)
- 2023Intelligent Health Indicators Based on Semi-supervised Learning Utilizing Acoustic Emission Datacitations
- 2023Hierarchical Upscaling of Data-Driven Damage Diagnostics for Stiffened Composite Aircraft Structures
- 2023Intelligent health indicator construction for prognostics of composite structures utilizing a semi-supervised deep neural network and SHM datacitations
- 2023Analysis of Stochastic Matrix Crack Evolution in CFRP Cross-Ply Laminates under Fatigue Loadingcitations
- 2023Delamination Size Prediction for Compressive Fatigue Loaded Composite Structures Via Ultrasonic Guided Wave Based Structural Health Monitoring
- 2022On the Challenges of Upscaling Damage Monitoring Methodologies for Stiffened Composite Aircraft Panelscitations
- 2022How literature reviews influence the selection of fatigue analysis framework
- 2022Early fatigue damage accumulation of CFRP Cross-Ply laminates considering size and stress level effectscitations
- 2021Fusion-based damage diagnostics for stiffened composite panelscitations
- 2021Modeling and imaging of ultrasonic array inspection of side drilled holes in layered anisotropic mediacitations
- 2020Enhancing the fracture toughness of carbon fibre/epoxy composites by interleaving hybrid meltable/non-meltable thermoplastic veilscitations
- 2020Significantly enhanced structural integrity of adhesively bonded PPS and PEEK composite joints by rapidly UV-irradiating the substratescitations
- 2020The influence of interlayer/epoxy adhesion on the mode-I and mode-II fracture response of carbon fibre/epoxy composites interleaved with thermoplastic veilscitations
- 2020Simulation of ultrasonic beam propagation from phased arrays in anisotropic media using linearly phased multi-Gaussian beamscitations
- 2020A gaussian beam based recursive stiffness matrix model to simulate ultrasonic array signals from multi-layered mediacitations
- 2019Systematic multiparameter design methodology for an ultrasonic health monitoring system for full-scale composite aircraft primary structurescitations
- 2019From thin to extra-thick adhesive layer thicknesses:Fracture of bonded joints under mode I loading conditionscitations
- 2018Experimental assessment of the influence of welding process parameters on Lamb wave transmission across ultrasonically welded thermoplastic composite jointscitations
- 2018Incorporating Inductive Bias into Deep Learning
- 2018Full-scale testing of an ultrasonic guided wave based structural health monitoring system for a thermoplastic composite aircraft primary structure
- 2018The stress ratio effect on plastic dissipation during fatigue crack growthcitations
- 2017Modelling of ultrasonic beam propagation from an array through transversely isotropic fibre reinforced composites using Multi Gaussian beams
- 2017Understanding mixed-mode cyclic fatigue delamination growth in unidirectional compositescitations
- 2016Thermo-viscoelastic analysis of GLAREcitations
- 2016Experimental characterisation of Lamb wave propagation through thermoplastic composite ultrasonic welds
- 2016Effect of fiber-matrix adhesion on the creep behavior of CF/PPS compositescitations
- 2016Experimental investigation of the microscopic damage development at mode i fatigue delamination tips in carbon/epoxy laminatescitations
Places of action
Organizations | Location | People |
---|
article
Understanding mixed-mode cyclic fatigue delamination growth in unidirectional composites
Abstract
<p>Due to the lack of fundamental knowledge of the physics behind delamination growth, certification authorities currently require that composite structures in aircraft are designed such that any delamination will not grow. This usually leads to an overdesign of the structure, hampering weight reductions. In real structures, delaminations tend to grow under a mix of modes I and II. Although some studies have tried to assess mixed-mode fatigue delamination, little progress was made in understanding the physics behind the problem. Therefore, this work scrutinizes mixed-mode fatigue delamination growth and examines experimentally the damage mechanisms that lead to fracture. To this aim, mixed-mode delamination fatigue tests were performed at different mode mixities, displacement ratios and maximum displacements. Selected fracture surfaces were analysed after the tests in a Scanning Electron Microscope to gain insight on the damage mechanisms. The physical Strain Energy Release Rate G∗ was used as the similitude parameter, enabling the characterization of fatigue mixed-mode delamination propagation. The results obtained show no displacement ratio or maximum displacement dependence. Furthermore, the energy dissipated per area of crack created is approximately constant for a given mode mixity. However, the analyses of the fracture surfaces and the correlation of the damage features with energy dissipation indicate that different damage mechanisms that might be activated under different loading parameters cause the resistance to delamination to change under a given loading mode.</p>