Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Plu, B.

  • Google
  • 1
  • 7
  • 48

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (1/1 displayed)

  • 2017Statistical evaluation of fatigue strength of double shear riveted connections and crack growth rates of materials from old bridges48citations

Places of action

Chart of shared publication
Correia, Jafo
1 / 56 shared
Sire, S.
1 / 3 shared
Rebelo, C.
1 / 10 shared
Fernandez Canteli, A.
1 / 12 shared
Mayorga, Lg
1 / 1 shared
Ragueneau, M.
1 / 2 shared
De Jesus, Amp
1 / 92 shared
Chart of publication period
2017

Co-Authors (by relevance)

  • Correia, Jafo
  • Sire, S.
  • Rebelo, C.
  • Fernandez Canteli, A.
  • Mayorga, Lg
  • Ragueneau, M.
  • De Jesus, Amp
OrganizationsLocationPeople

article

Statistical evaluation of fatigue strength of double shear riveted connections and crack growth rates of materials from old bridges

  • Correia, Jafo
  • Sire, S.
  • Plu, B.
  • Rebelo, C.
  • Fernandez Canteli, A.
  • Mayorga, Lg
  • Ragueneau, M.
  • De Jesus, Amp
Abstract

The maintenance of old riveted bridges has become a major concern for railroad managers across Europe. These metallic structures, built on their majority on the second half of the 19th century, are indeed submitted to ever increasing traffic loads (augmentation in weight and speed of rolling stock). To assess the remaining life of these metallic bridges, some critical structural details have been identified and associated to S-N curves to be used in damage estimation (using Palmgren-Miner's rule for cumulative damage, for example). These constructional details are often described in construction standards, such as the EN 1993-1-9, the BS 5400 and the AASHTO standards. The particularity of older hot-riveted bridges is that their numerous geometric configurations are often under-represented, thus, limiting the accuracy of damage estimation. To compensate the absence of hot riveted assemblies in the standards, numerous research groups have performed extensive experimental campaigns. However, the heterogeneity and rarity of the material (no longer produced nowadays), as well as the very diverse geometrical configurations used at the time of the construction of the bridges (given the novelty proposed by the introduction of metal as a new material in monumental construction), makes difficult the comparison of experimental data. In order to facilitate interpretation and differentiation of fatigue data of a particular type of constructional detail, experimental data from double shear assemblies manufactured from three different metallic ancient bridges is considered (French and Portuguese puddled iron bridges). Then, through statistical analysis (linearized boundaries and the Fernandez-Canteli model), the S-N curves corresponding to their structural configuration are identified. Comparisons to the EN 1993-1-9, the BS 5400 and the AASHTO standards are also proposed. The combination of the S-N curves and Fracture Mechanics approaches can be used to evaluate the residual life of the old riveted metallic bridges. Thus, a statistical analysis

Topics
  • impedance spectroscopy
  • crack
  • strength
  • fatigue
  • iron