Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Garb, C.

  • Google
  • 1
  • 2
  • 24

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (1/1 displayed)

  • 2017Application of √area-concept to assess fatigue strength of AlSi7Cu0.5Mg casted components24citations

Places of action

Chart of shared publication
Leitner, Martin
1 / 66 shared
Grün, F.
1 / 3 shared
Chart of publication period
2017

Co-Authors (by relevance)

  • Leitner, Martin
  • Grün, F.
OrganizationsLocationPeople

article

Application of √area-concept to assess fatigue strength of AlSi7Cu0.5Mg casted components

  • Leitner, Martin
  • Grün, F.
  • Garb, C.
Abstract

In this paper casted aluminium alloy AlSi7Cu0.5Mg T6W is examined by fatigue strength testing and fractographic analysis of the fractured surfaces to characterise the failure origin. The specimens extracted from cylinder heads differ in their eutectic modification between strontium (Sr) and sodium (Na). Three specimen locations are Sr-modified and one is Na-modified. The fractographic analysis enables the characterisation of the occurred micropore sizes within the different specimen positions. The determination of the micropore sizes is also supported by computed tomography (CT) scans for better understanding of the micropore shapes. Murakami's √area-concept is applied on the four data sets to investigate the dependency of the fatigue strength on the micropore size. For the purpose of increasing the number of data points at the run-out region, two projection methods are presented to consider data points from the finite-life regime. Considering the scatter band of the S/N-curves, a method based on a power equation is selected. The √area-concept is additionally modified to enabling a more precise adjustment on the respective data set. The fractographic analyses show mixed occurrence of slip bands and micropores. To evaluate the application of such mixed cause of failure in the applied approach, a reduced data set without such mixed failure types is compared with the results over the whole data base. The √area-concept over all data points exhibit valid results proofing that the consideration of the mixed causes of failure including slip bands and micropores is acceptable.Comparing the stress levels of fatigue tests with the results from the applied model, on average a conservative behaviour can be noted, whereas almost all assessed data points are within a scatter band of 10% deviation to the mean value of the experiments.

Topics
  • impedance spectroscopy
  • surface
  • experiment
  • tomography
  • aluminium
  • strength
  • Sodium
  • fatigue
  • aluminium alloy
  • Strontium