People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Xin, Haohui
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (10/10 displayed)
- 2022Fracture simulation of welded RHS X-joints using GTN damage modelcitations
- 2022Fracture simulation of welded RHS X-joints using GTN damage modelcitations
- 2021Effects of residual stresses on fatigue crack propagation of an orthotropic steel bridge deckcitations
- 2021Mechanical behaviour of welded high strength steel rectangular hollow section jointscitations
- 2021Three-dimensional fatigue crack propagation simulation using extended finite element methods for steel grades S355 and S690 considering mean stress effectscitations
- 2021Fracture parameters calibration and validation for the high strength steel based on the mesoscale failure indexcitations
- 2021Ductile fracture locus identification using mesoscale critical equivalent plastic straincitations
- 2019Computational homogenization simulation on steel reinforced resin used in the injected bolted connectionscitations
- 2019Fatigue crack propagation simulation of orthotropic bridge deck based on extended finite element methodcitations
- 2018Non-linear hybrid homogenization method for steel-reinforced resincitations
Places of action
Organizations | Location | People |
---|
article
Mechanical behaviour of welded high strength steel rectangular hollow section joints
Abstract
<p>The material reduction factor of rectangular hollow section (RHS) joints in a new version of Eurocode 3 part 1–8 is validate for steel with the nominal yield strength up to 700 MPa. In this paper, finite element simulations of gap K-joints are conducted to investigate effects of material properties, gap size of the joint, the brace to chord width ratio and welds type on the secondary bending stresses and the resistance. The governing failure mode considered for all the FE models is the chord face failure followed by brace sidewall failure. The ratio of axial stresses to the nominal stress was lower in the compressive brace made of higher strength steel grades compared to the mild strength grades. The maximum secondary bending stresses is 0.12–0.32 yield strength. The secondary bending stresses are increasing with the increase of the steel grade and the brace to chord width ratio and with reducing the gap size. The level of secondary bending stresses varied between 38% and 56% of the average normal axial stress. The secondary bending stresses of fillet-welded joints are larger than the butt-welded joints. The yield line model is used to predict the ultimate load and good agreement is obtained compared with FE results.</p>