Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Horas, Cs

  • Google
  • 5
  • 12
  • 75

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (5/5 displayed)

  • 2023Performing Fatigue State Characterization in Railway Steel Bridges Using Digital Twin Models9citations
  • 2022Efficient progressive global-local fatigue assessment methodology for existing metallic railway bridges17citations
  • 2018Development of an efficient approach for fatigue crack initiation and propagation analysis of bridge critical details using the modal superposition technique29citations
  • 2018Evaluation of fatigue crack propagation considering the modal superposition techniquecitations
  • 2017Application of the modal superposition technique combined with analytical elastoplastic approaches to assess the fatigue crack initiation on structural components20citations

Places of action

Chart of shared publication
Martins, Jp
1 / 3 shared
Matos, Ja
1 / 1 shared
Caltada, R.
1 / 1 shared
Nhamage, Ia
1 / 1 shared
Dang, Ns
1 / 1 shared
Calcada, R.
3 / 17 shared
De Jesus, Amp
3 / 92 shared
Alencar, G.
2 / 2 shared
Jesus, A.
1 / 4 shared
Correia, Jafo
1 / 56 shared
Calçada, R.
1 / 2 shared
Kripakaran, P.
1 / 3 shared
Chart of publication period
2023
2022
2018
2017

Co-Authors (by relevance)

  • Martins, Jp
  • Matos, Ja
  • Caltada, R.
  • Nhamage, Ia
  • Dang, Ns
  • Calcada, R.
  • De Jesus, Amp
  • Alencar, G.
  • Jesus, A.
  • Correia, Jafo
  • Calçada, R.
  • Kripakaran, P.
OrganizationsLocationPeople

article

Development of an efficient approach for fatigue crack initiation and propagation analysis of bridge critical details using the modal superposition technique

  • Alencar, G.
  • Calcada, R.
  • De Jesus, Amp
  • Horas, Cs
Abstract

The fatigue damage assessment of large bridges is highly conditioned by the required computational high demands. Generally, in order to overcome the multi-scale problem, global and local models are needed to properly account for both global structural behaviour and the local nature of the fatigue damage. The analysis of such structural problems using direct time-integration algorithms is impracticable in most of the cases, which leads to the necessity of developing alternative methodologies in order to increase the computational efficiency and the accuracy of fatigue cracking assessments. In this respect, effective computational algorithms based on the modal superposition technique have been proposed and implemented in previous works. Overall, such workflow considers the interaction between the global and local models combined with the application of the modal stress intensity factor concept. Aiming at performing an efficient and accurate assessment of the fatigue damage, firstly, combining the Fracture Mechanics principles and crack propagation laws, the crack propagation phase in a complex bridge detail is analysed. In this regard, the present paper aims at proposing relevant improvements to the above-mentioned methodology, namely: i) the refinement of the implemented submodelling techniques in order to increase the accuracy of stress and strain fields computation and allow to account for smaller initial crack lengths; ii) the analysis and limitation of the considered number of vibration modes to the relevant ones for the local dynamic response; and iii) the implementation of a parallel computing approach for the calculation of the modal stress intensity factors related to the vibration modes defined in ii). The fatigue assessment procedures were applied to an assumed cracked welded detail of a recent railway composite bowstring bridge located in Portugal. Also, since the assumption of a pre-existing crack may lead to very conservative predictions, the modal superposition technique is further extended to evaluate the fatigue crack initiation phase, demonstrating the safety of the analysed case study in the absence of existing defects.

Topics
  • impedance spectroscopy
  • phase
  • crack
  • fatigue
  • composite