Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Chahar, R. S.

  • Google
  • 2
  • 3
  • 24

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (2/2 displayed)

  • 2023On quantifying uncertainty in lightning strike damage of composite laminates: a hybrid stochastic framework of coupled transient thermal-electrical simulations9citations
  • 2023Multi-fidelity machine learning based uncertainty quantification of progressive damage in composite laminates through optimal data fusion15citations

Places of action

Chart of shared publication
Mukhopadhyay, T.
1 / 20 shared
Lee, J.
1 / 41 shared
Mukhopadhyay, Tanmoy
1 / 43 shared
Chart of publication period
2023

Co-Authors (by relevance)

  • Mukhopadhyay, T.
  • Lee, J.
  • Mukhopadhyay, Tanmoy
OrganizationsLocationPeople

article

Multi-fidelity machine learning based uncertainty quantification of progressive damage in composite laminates through optimal data fusion

  • Chahar, R. S.
  • Mukhopadhyay, Tanmoy
Abstract

Recently machine learning (ML) based approaches have gained significant attention in dealing with computationally intensive analyses such as uncertainty quantification of composite laminates. However, high-fidelity ML model construction is computationally demanding for such high-dimensional problems due to the required large amount of high-fidelity training data. We propose to address this issue effectively through multi-fidelity ML based surrogates which can use a training dataset consisting of optimally distributed high- and low-fidelity simulations. For forming multi-fidelity surrogates of progressive damage in composite laminates, we combine low-fidelity finite element analysis data obtained using Matzenmiller damage model with Hasin failure criteria and high-fidelity finite element analysis data obtained using three-dimensional continuum damage mechanics based model with P Linde's failure criteria. It is shown that there is a significant computational advantage to using the multi-fidelity surrogate approach as compared to conventional single-fidelity surrogates. Such computational advantage through optimal data fusion without compromising accuracy becomes crucial for the subsequent data-driven uncertainty quantification and sensitivity analysis of composites involving thousands of realizations. Ply orientations come out to be the most sensitive parameters to matrix damage, fibre damage and reaction force in composite laminates. The degree of uncertainty in the output quantities depend on the input-level stochastic variations. For example, a combined stochastic variation of ±10% in material properties and ±10° in ply orientations lead to 1.85%, 16.98% and 11.24% coefficient of variation in the matrix damage, fibre damage and reaction force respectively. In general, the numerical results obtained based on the efficient data-driven approach strongly suggest that source-uncertainty of composites significantly influences the progressive damage evolution and global mechanical behaviour, leading to the realization ...

Topics
  • impedance spectroscopy
  • simulation
  • composite
  • forming
  • random
  • finite element analysis
  • machine learning