People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Belinha, J.
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (22/22 displayed)
- 2023Analysis of Lattices Based on TPMS for Bone Scaffold
- 2022A bio-inspired remodelling algorithm combined with a natural neighbour meshless method to obtain optimized functionally graded materialscitations
- 2021The Radial Point Interpolation Method in the Bending Analysis Of Symmetric Laminates Using HSDTS
- 2021A meshless study of antisymmetric angle-ply laminates using high-order shear deformation theoriescitations
- 2021The influence of infill density gradient on the mechanical properties of PLA optimized structures by additive manufacturingcitations
- 2021The bending behaviour of antisymmetric cross-ply laminates using high-order shear deformation theories and a Radial Point Interpolation Methodcitations
- 2021Homogenizing the Elastic Properties of Composite Material Using the NNRPIM
- 2021Numerical analysis of honeycomb-shaped polymeric foams using the FEM and the RPIMcitations
- 2021Using a radial point interpolation meshless method and the finite element method for application of a bio-inspired remodelling algorithm in the design of optimized bone scaffoldcitations
- 2021Simulation of the viscoplastic extrusion process using the radial point interpolation meshless methodcitations
- 2020Analysis of antisymmetric cross-ply laminates using high-order shear deformation theories: a meshless approachcitations
- 2020The numerical analysis of symmetric cross-ply laminates using the natural neighbour radial point interpolation method and high-order shear deformation theoriescitations
- 2018The analysis of composite laminated beams using a 2D interpolating meshless techniquecitations
- 2018Simulating fracture propagation in brittle materials using a meshless approachcitations
- 2017Aluminum foam sandwich with adhesive bonding: Computational modelingcitations
- 2017The computational analysis of composite laminates: Meshless formulation
- 2016Vibration analysis of laminated soft core sandwich plates with piezoelectric sensors and actuatorscitations
- 2016The analysis of laminated plates using distinct advanced discretization meshless techniquescitations
- 2013Composite laminated plate analysis using the natural radial element methodcitations
- 2010Composite Laminated Plates: A 3D Natural Neighbor Radial Point Interpolation Method Approachcitations
- 2010A 3D shell-like approach using a natural neighbour meshless method: Isotropic and orthotropic thin structurescitations
- 2007Nonlinear analysis of plates and laminates using the element free Galerkin methodcitations
Places of action
Organizations | Location | People |
---|
article
A bio-inspired remodelling algorithm combined with a natural neighbour meshless method to obtain optimized functionally graded materials
Abstract
Recent developments suggest the use of triply periodic minimal surfaces (such as the gyroid) as a possibility for bone tissue scaffold. Moreover, through functional gradients of cellular structures, the mechanical properties can be edited and enhanced to achieve the most efficient results. One of the main concerns when designing bone scaffold is avoiding stress shielding, which occurs when the Young's modulus of the implant is higher than the Young's modulus of the bone it is replacing. If so, bone decay occurs in the surrounding tissue. While the literature possesses some approaches exploring functional gradients of material density, there are no solutions based on bone tissue phenomenological laws. Thus, the gyroid infill obtained with PLA (E = 3145 MPa) was characterized with mechanical tests, namely tensile and compression, and the obtained model was implemented in a bone remodelling algorithm. Using the natural neighbour radial point interpolation method (NNRPIM) it was found that similar bone density distributions were obtained for the gyroid infill and for bone tissue when subject to the same boundary conditions. Finally, the gyroid mechanical behaviour was extrapolated to other materials and it was concluded that similar properties can be obtained for bone tissue and titanium alloy (E = 110 GPa) scaffold.