People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Alves, Jl
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (19/19 displayed)
- 2024Artificial reefs through additive manufacturing: a review of their design, purposes and fabrication process for marine restoration and managementcitations
- 2023Potential Use of Sugarcane Bagasse Ash in Cementitious Mortars for 3D Printingcitations
- 2023Analysis of Lattices Based on TPMS for Bone Scaffold
- 20224D structures for the short-time building of emergency shelterscitations
- 2022Design and validation of an innovative 3D printer containing a co-rotating twin screw extrusion unitcitations
- 2022A bio-inspired remodelling algorithm combined with a natural neighbour meshless method to obtain optimized functionally graded materialscitations
- 2021Development of 3D printing sustainable mortars based on a bibliometric analysiscitations
- 2021The influence of infill density gradient on the mechanical properties of PLA optimized structures by additive manufacturingcitations
- 2021Effect of 3D printer enabled surface morphology and composition on coral growth in artificial reefscitations
- 2021Using a radial point interpolation meshless method and the finite element method for application of a bio-inspired remodelling algorithm in the design of optimized bone scaffoldcitations
- 2020Influence of multiple scan fields on the processing of 316L stainless steel using laser powder bed fusioncitations
- 2020Machinability of PA12 and short fibre-reinforced PA12 materials produced by fused filament fabricationcitations
- 2019Study of the influence of sintering temperature on water absorption in the manufacture of porcelain cupscitations
- 2017Effect of the chemical milling process on the surface of titanium aluminide castings
- 2017Study of the viability of manufacturing ceramic moulds by additive manufacturing for rapid castingcitations
- 2017Experimental characterization of ceramic shells for investment casting of reactive alloyscitations
- 2017Reinforcement of a biopolymer matrix by lignocellulosic agro-wastecitations
- 2017The influence of face coat material on reactivity and fluidity of the Ti6Al4V and TiAl alloys during investment castingcitations
- 2015DEVELOPMENT OF A PROJECT AND MANUFACTURE METHODOLOGY FOR TITANIUM ALLOYS JOINT PROSTHESES
Places of action
Organizations | Location | People |
---|
article
A bio-inspired remodelling algorithm combined with a natural neighbour meshless method to obtain optimized functionally graded materials
Abstract
Recent developments suggest the use of triply periodic minimal surfaces (such as the gyroid) as a possibility for bone tissue scaffold. Moreover, through functional gradients of cellular structures, the mechanical properties can be edited and enhanced to achieve the most efficient results. One of the main concerns when designing bone scaffold is avoiding stress shielding, which occurs when the Young's modulus of the implant is higher than the Young's modulus of the bone it is replacing. If so, bone decay occurs in the surrounding tissue. While the literature possesses some approaches exploring functional gradients of material density, there are no solutions based on bone tissue phenomenological laws. Thus, the gyroid infill obtained with PLA (E = 3145 MPa) was characterized with mechanical tests, namely tensile and compression, and the obtained model was implemented in a bone remodelling algorithm. Using the natural neighbour radial point interpolation method (NNRPIM) it was found that similar bone density distributions were obtained for the gyroid infill and for bone tissue when subject to the same boundary conditions. Finally, the gyroid mechanical behaviour was extrapolated to other materials and it was concluded that similar properties can be obtained for bone tissue and titanium alloy (E = 110 GPa) scaffold.