People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Candelier, Kévin
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (20/20 displayed)
- 2023Heat treatment of poplar plywood: modifications in physical, mechanical and durability propertiescitations
- 2021Assessment of catalytic torrefaction promoted by biomass potassium impregnation through performance indexescitations
- 2021A potassium responsive numerical path to model catalytic torrefaction kineticscitations
- 2020Anti-fungal and anti-termite activity of extractives compounds from thermally modified ash woodscitations
- 2019Termite and decay resistance of bioplast-spruce green wood-plastic compositescitations
- 2018Comparative study of local Tunisian woods properties and the respective qualities of their charcoals produced by a new industrial eco-friendly carbonization processcitations
- 2017Some physical and mechanical characterization of Tunisian planted #Eucalytus loxophleba# and #Eucalyptus salmonophloia# woods
- 2017Developing biocomposites panels from food packaging and textiles wastes: Physical and biological performancecitations
- 2017Resistance of thermally modified ash (#Fraxinus excelsior# L.) wood under steam pressure against rot fungi, soil-inhabiting micro-organisms and termitescitations
- 2016Study on chemical oxidation of heat treated lignocellulosic biomass under oxygen exposure by STA-DSC-FTIR analysiscitations
- 2016Control of wood thermal treatment and its effects on decay resistance: a reviewcitations
- 2015Heat treatment of tunisian soft wood species: effect on the durability, chemical modifications and mechanical propertiescitations
- 2015Impact of location and forestry conditions on some physical and mechanical properties of northern Tunisian #Pinus pinea# L. woodcitations
- 2015Mechanical characterization of heat-treated ash wood in relation with structural timber standards
- 2015Utilization of temperature kinetics as a method to predict treatment intensity and corresponding treated wood quality: Durability and mechanical properties of thermally modified woodcitations
- 2014Advantage of vacuum versus nitrogen to achieve inert atmosphere during softwood thermal modification
- 2013Utilization of TG-DSC to study thermal degradation of beech and silver fir
- 2013Effect of the nature of the inert atmosphere used during thermal treatment on chemical composition, decay durability and mechanical properties of wood
- 2013Comparison of chemical composition and decay durability of heat treated wood cured under different inert atmospheres: Nitrogen or vacuumcitations
- 2013Comparison of mechanical properties of heat treated beech wood cured under nitrogen or vacuumcitations
Places of action
Organizations | Location | People |
---|
article
A potassium responsive numerical path to model catalytic torrefaction kinetics
Abstract
To assess the potassium catalytic influence on the kinetic behavior of non-oxidative biomass torrefaction, two woody biomass samples (Amapaí and Eucalyptus), as well as Miscanthus samples impregnated with three different K2CO3 concentrations (0.003 M, 0.006 M, and 0.009 M) were comprehensively studied. The solid thermal degradation kinetics were analyzed through thermogravimetric analysis in usual torrefaction conditions (275 °C during 68min and 10 °C.min−1 heating rate) and an original Potassium Responsive Numerical Path (PRNP). Therefore, a two-step reaction model with unified activation energies was integrated within a numerical method that considers the torrefaction severity influence for each potassium-loading content in all three biomasses. The proposed PRNP enables an accurate solid yield prediction (R2 > 0.9995). A strong (R2 between 0.91 and 0.99) and a significant (0.0463) linear correlation was highlighted between the potassium content in biomass, the increasing reaction rates, and pre-exponential factors. The solid and volatile product distribution depicted faster and marked degradation for solid pseudo-components and anticipated a higher volatile release. The catalytic torrefaction severity factor determination enabled correlating treatment severity and kinetic rates showing better correlations than K% for wood biomass. The accurate results are conducive to developing numerical models that are essential for assessing solid fuel upgrading under catalytic effect in torrefaction plants.