People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Mirzaeian, Mojtaba
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (17/17 displayed)
- 2022Development of functional materials for the removal of heavy metals from industrial waste waters
- 2022Graphene synthesis techniques and environmental applicationscitations
- 2022Structural tuneability and electrochemical energy storage applications of resorcinol-formaldehyde-based carbon aerogelscitations
- 2020Effect of physical activation/surface functional groups on wettability and electrochemical performance of carbon/activated carbon aerogels based electrode materials for electrochemical capacitorscitations
- 2020Pseudocapacitive effect of carbons doped with different functional groups as electrode materials for electrochemical capacitorscitations
- 2019Effect of nitrogen doping on the electrochemical performance of resorcinol-formaldehyde based carbon aerogels as electrode material for supercapacitor applicationscitations
- 2018Synthesis and characterisation of control porosity resorcinol formaldehyde based carbon aerogels under different conditions
- 2018Effect of nitrogen doping on physical and electrochemical properties of resorcinol / formaldehyde based carbons
- 2017Synthesis and electrochemical properties of highly porous nitrogen-doped carbon for improved supercapacitor performance
- 2017Improving the functionality of resorcinol-formaldehyde based carbon aerogels as electrode material for supercapacitor applications
- 2017Electrochemical performance of controlled porosity resorcinol/formaldehyde based carbons as electrode materials for supercapacitor applicationscitations
- 2015The Effect of Growth Conditions on the Surface Energy, Optical Properties and Saline Corrosion Resistance of Amorphous Chromium Oxide Thin Films Prepared by Reactive Magnetron Sputtering
- 2010Study of structural change in Wyodak coal in high pressure CO2 by small-angle neutron scatteringcitations
- 2009The control of porosity at nano scale in resorcinol formaldehyde carbon aerogelscitations
- 2009Preparation of controlled porosity carbon-aerogels for energy storage in rechargeable lithium oxygen batteriescitations
- 2008Thermodynamical studies of irreversible sorption of CO2 by Wyodak coal
- 2007High capacity carbon based electrodes for lithium/oxygen batteries
Places of action
Organizations | Location | People |
---|
article
Effect of nitrogen doping on the electrochemical performance of resorcinol-formaldehyde based carbon aerogels as electrode material for supercapacitor applications
Abstract
Nitrogen doped resorcinol/formaldehyde carbon aerogels with controlled nitrogen content are synthesized by controlling the resorcinol/melamine molar ratio (R/M) during the synthesis of aerogel precursors. The carbons were used as electrode materials in an electrochemical capacitor using 6M KOH solution as electrolyte. All samples exhibited amorphous structure with low degree of graphitization. The maximum specific capacitance of 208 Fg-1 was observed after doping of the carbon with nitrogen at R/M = 80. Drop in solution and charge transfer resistances from 0.57Ω to 0.15Ω and 0.05Ω to 0.04Ω was also observed respectively, with the drop in contact angles from 123º to 103º for the carbon doped with nitrogen at R/M = 80. BET results showed that the pore volume and surface area of carbon increase after N-doping, with a BET surface area of 841 m2 g-1 at R/M = 80.This R/M ratio is an optimum ratio at which incorporation of nitrogen into the carbon matrix improves the capacitive performance of cell as a result of improved porosity/wettability/conductivity/active sites of the electrode. Doping at higher nitrogen concentrations (R/M < 80) decreased the specific capacitance of the cell significantly due to decreased conductivity of carbon and suppression of the hopping rate of dopant.