People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Onyenkeadi, V.
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (6/6 displayed)
- 2019Systematic multivariate optimisation of butylene carbonate synthesis via CO <inf>2</inf> utilisation using graphene-inorganic nanocomposite catalystscitations
- 2018A facile and greener synthesis of butylene carbonate via CO2 utilisation using a novel copper–zirconia oxide/graphene catalyst
- 2018Greener synthesis of butylene carbonate via CO2 utilisation using graphene-inorganic nanocomposite catalysts
- 2018Greener synthesis of 1,2-butylene carbonate from CO2 using graphene-inorganic nanocomposite catalystcitations
- 2017Greener synthesis of styrene carbonate from CO2 using graphene-inorganic nanocomposite catalysts
- 2017Greener synthesis of 1, 2 butylene carbonate from CO2 using graphene-inorganic nanocomposite catalysis
Places of action
Organizations | Location | People |
---|
article
Greener synthesis of 1,2-butylene carbonate from CO2 using graphene-inorganic nanocomposite catalyst
Abstract
The synthesis of 1,2-butylene carbonate (BC) from cycloaddition reaction of 1,2-butylene oxide (BO) and carbon dioxide (CO2) was investigated using several heterogeneous catalysts in the absence of organic solvent. Continuous hydrothermal flow synthesis (CHFS) has been employed as a rapid and cleaner route for the synthesis of a highly efficient graphene-inorganic heterogeneous catalyst, ceria-lanthana-zirconia/graphene nanocomposite, represented as Ce–La–Zr/GO. The heterogeneous catalysts have been characterised using transmission electron microscopy (TEM), X-ray photoelectron spectroscopy (XPS), X-ray powder diffraction (XRD) and nitrogen adsorption/desorption (BET for measuring the surface area/pore size distribution),. Ceria- lanthana-zirconia/graphene nanocomposite catalyst (Ce–La–Zr/GO) exhibited high catalytic activity as compared to other reported heterogeneous catalysts in the absence of any organic solvent with a selectivity of 76% and 64% yield of 1,2-butylene carbonate at the reaction conditions of 408 K, 75 bar in 20 h.