People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Holze, Rudolf
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (10/10 displayed)
- 2023Composites of Intrinsically Conducting Polymers with Carbonaceous Materials for Supercapacitors – An Update
- 2016Electrochemical supercapacitive properties of polypyrrole thin films: influence of the electropolymerization methodscitations
- 2015Asymmetric supercapacitors based on hybrid CuO@Reduced Graphene Oxide@Sponge versus Reduced Graphene Oxide@Sponge Electrodescitations
- 2014Screen Printed Asymmetric Supercapacitors based on LiCoO2 and Graphene Oxidecitations
- 2013All-solid-state flexible thin film supercapacitor based on Mn3O4 stacked nanosheets with gel electrolytecitations
- 2013Mild chemical strategy to grow micro-roses and micro-woolen like arranged CuO nanosheets for high performance supercapacitorscitations
- 2013A successive ionic layer adsorption and reaction (SILAR) method to induce Mn3O4 nanospots on CNTs for supercapacitorscitations
- 2013CuO cauliflowers for supercapacitor application: Novel potentiodynamic depositioncitations
- 2009Theoretical Treatment of 3-phenylsubstituted Thiophenes and their Intrinsically Conducting Polymerscitations
- 2009Corrosion Protection Performance and Spectroscopic Investigations of Soluble Conducting Polyaniline-Dodecylbenzenesulfonate Synthesized via Inverse Emulsion Procedurecitations
Places of action
Organizations | Location | People |
---|
article
All-solid-state flexible thin film supercapacitor based on Mn3O4 stacked nanosheets with gel electrolyte
Abstract
Recently, much effort has been devoted to accomplish thin, lightweight and flexible energy-storage devices for wearable electronics. Here, we demonstrate a novel kind of thin all-solid-state supercapacitor configuration with an extremely simple process using two slightly separated stacked nanosheets-like Mn3O4 electrodes well solidified in the H2SO4-polyvinyl alcohol gel electrolyte. This integrate device shows a high specific capacitance of 127 F g-1 for the electrode materials with good power and energy density values. These flexible and all-solid-state Mn3O4 supercapacitors bring new design opportunities of device configuration for future energy-storage devices. Present investigation first time reported that Mn3O4 is one of the most promising materials for the fabrication of all solid state thin film supercapacitors (ASSTFSs).