People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Rahman, Saidur
Lancaster University
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (17/17 displayed)
- 2023Thermo-kinetic behaviour of green synthesized nanomaterial enhanced organic phase change material : Model fitting approach
- 2022Hydrogen-rich syngas production from bi-reforming of greenhouse gases over zirconia modified Ni/MgO catalystcitations
- 2022Improved thermo-physical properties and energy efficiency of hybrid PCM/graphene-silver nanocomposite in a hybrid CPV/thermal solar systemcitations
- 2022Potent antibacterial activity of MXene–functionalized graphene nanocomposites
- 2021Optimization of thermophysical and rheological properties of mxene ionanofluids for hybrid solar photovoltaic/thermal systemscitations
- 2021ANN Modeling of Thermal Conductivity and Viscosity of MXene-Based Aqueous IoNanofluidcitations
- 2021Back propagation modeling of shear stress and viscosity of aqueous Ionic-MXene nanofluidscitations
- 2021Analysis of Multiwalled Carbon Nanotubes Porosimetry And Their Thermal Conductivity with Ionic Liquid-Based Solventscitations
- 2020Experimental investigation of energy storage properties and thermal conductivity of a novel organic phase change material/MXene as A new class of nanocompositescitations
- 2020Experimental investigation of energy storage properties and thermal conductivity of a novel organic phase change material/MXene as A new class of nanocompositescitations
- 2020Effect of al2o3 dispersion on enthalpy and thermal stability of ternary nitrate eutectic salt
- 2020Experimental assessment of a novel eutectic binary molten salt-based hexagonal boron nitride nanocomposite as a promising PCM with enhanced specific heat capacitycitations
- 2020New magnetic Co3O4/Fe3O4 doped polyaniline nanocomposite for the effective and rapid removal of nitrate ions from ground water samplescitations
- 2019Experimental investigation of thermal stability and enthalpy of eutectic alkali metal solar salt dispersed with MGO nanoparticlescitations
- 2019Crosslinked thermoelectric hydro-ionogelscitations
- 2019The influence of covalent and non-covalent functionalization of GNP based nanofluids on its thermophysical, rheological and suspension stability propertiescitations
- 2018Conducting polymers
Places of action
Organizations | Location | People |
---|
article
Crosslinked thermoelectric hydro-ionogels
Abstract
In this work, a new class of highly-conductive chemically cross-linked gel has been synthesized by the confinement of water and IL N, N, N triethyl octyl ammonium bromide ([N2228] Br) in polyethylene glycol dimethacrylate (PEGDMA) matrix, using in situ thermally initiated radical polymerization loaded with 1 wt% free radical initiator azobisisobutyronitrile (AIBN). This novel gel was named as hydro-ionogel (HIG). The thermoelectric properties of HIG such as ionic conductivity, Seebeck coefficient, and thermal conductivity were measured and owing to its high thermoelectric performance, we referred to this as crosslinked thermoelectric hydro-ionogel, henceforth will be denoted by X-TEHIG. For all the measurements, coin cells were fabricated using commercial LIR 2032 stainless steel battery casings with X-TEHIG sandwiched between the two graphene electrodes. The ionic conductivity of X-TEHIG was examined via AC impedance spectroscopy technique by using a Gamry apparatus. Remarkably, the ionic conductivity of X-TEHIG was higher than that of neat [N2228] Br. A linear increase in ionic conductivity of X-TEHIG as a function of temperature was recorded that showed a considerably higher value of 74 mScm−1 at 70 °C. The origin of this high conductivity is attributed to interactions between PEGDMA monomers and cations and anions of the IL and formation of hydrogen bonds between water and Br− anion, OH⋯Br−. X-TEHIG demonstrated a higher Seebeck coefficient of 1.38 mVK−1. The Fourier transform infrared (FTIR) spectroscopy results revealed the successful polymerization of X-TEHIG by the disappearance of CC peak of methacrylate group in the spectrum of PEGDMA. These results suggest that X-TEHIG may be a potential candidate for thermoelectric applications owing to their high values of ionic conductivity and Seebeck coefficient.