Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Mori, Kohsuke

  • Google
  • 2
  • 11
  • 33

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (2/2 displayed)

  • 2022New insights in establishing the structure-property relations of novel plasmonic nanostructures for clean energy applications21citations
  • 2016Skeletal Au prepared from Au-Zr amorphous alloys with controlled atomic compositions and arrangement for active oxidation of benzyl alcohol12citations

Places of action

Chart of shared publication
Verma, Priyanka
1 / 2 shared
Raja, Robert
1 / 9 shared
Kuwahara, Yasutaka
2 / 2 shared
Yamashita, Hiromi
2 / 2 shared
Tanihara, Yasutomo
1 / 1 shared
Nozaki, Ai
1 / 1 shared
Louis, Catherine
1 / 6 shared
Nagase, Takeshi
1 / 4 shared
Ohmichi, Tetsutaro
1 / 1 shared
Yasuda, Hiroyuki Y.
1 / 2 shared
Calers, Christophe
1 / 4 shared
Chart of publication period
2022
2016

Co-Authors (by relevance)

  • Verma, Priyanka
  • Raja, Robert
  • Kuwahara, Yasutaka
  • Yamashita, Hiromi
  • Tanihara, Yasutomo
  • Nozaki, Ai
  • Louis, Catherine
  • Nagase, Takeshi
  • Ohmichi, Tetsutaro
  • Yasuda, Hiroyuki Y.
  • Calers, Christophe
OrganizationsLocationPeople

article

New insights in establishing the structure-property relations of novel plasmonic nanostructures for clean energy applications

  • Verma, Priyanka
  • Mori, Kohsuke
  • Raja, Robert
  • Kuwahara, Yasutaka
  • Yamashita, Hiromi
Abstract

Plasmonic nanostructures have provided unique opportunities for harvesting solar energy to facilitate various chemical reactions. In the past decade, localized surface plasmon resonance (LSPR) has been extensively explored in catalysis to increase the activity and selectivity of chemical transformation reactions under mild reaction conditions, however, they are still subjected to many challenges in terms of lower efficiency, stability and reaction mechanisms under light irradiation conditions. There have been numerous research efforts in exploring the catalytic trends, mechanisms, challenges and applications in plasmonic catalysis. Several cutting-edge characterization techniques (UV-vis, surface voltage spectroscopy, SERS, photoluminescence, photocurrent measurements and theoretical simulations) have been employed to characterize and establish the structure-property relationship of noble metal-based plasmonic hybrid nanostructures. In this review, we have attempted to correlate the operando techniques to understand the structural details and their plasmonic catalytic activities in emerging applications, hydrogen generation and CO 2 reduction reactions.

Topics
  • surface
  • photoluminescence
  • simulation
  • Hydrogen
  • spectroscopy