People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Silva, L.
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (18/18 displayed)
- 2024Strategies for the incorporation of organosolv lignin in hydroxypropyl methylcellulose-based films: A comparative study.citations
- 2023Benchmark exercise on image-based permeability determination of engineering textiles: Microscale predictionscitations
- 2021Durability of a New Thermal Aerogel-Based Rendering System under Distinct Accelerated Aging Conditionscitations
- 2021Hygrothermal performance of a new thermal aerogel-based render under distinct climatic conditionscitations
- 2020In-Situ Tests on Silica Aerogel-Based Rendering Wallscitations
- 2019Development of a wall system made with thermally optimized masonry and super insulation mortar render
- 2018A facile approach of developing micro crystalline cellulose reinforced cementitious composites with improved microstructure and mechanical performancecitations
- 2017Influence of surface treatments on the mechanical properties of fibre reinforced thermoplastic compositescitations
- 2015Bottom ash from biomass combustion in BFB and its use in adhesive-mortarscitations
- 2014Functionalization of mortars for controlling the indoor ambient of buildingscitations
- 2014Molecular Modeling to Study Dendrimers for Biomedical Applications
- 2014The influence of porogene additives on the properties of mortars used to control the ambient moisturecitations
- 2014Development of porogene-containing mortars for levelling the indoor ambient moisturecitations
- 2013Mortar formulations with bottom ash from biomass combustioncitations
- 2011The chemical evolution of elliptical galaxies with stellar and QSO dust productioncitations
- 2008Investigation of hydrocarbon coated porous silicon using PECVD technique to detect CO2 gas
- 2008Highly stable transparent and conducting gallium-doped zinc oxide thin films for photovoltaic applicationscitations
- 2005Refractory mortars based on industrial wastes
Places of action
Organizations | Location | People |
---|
article
Hygrothermal performance of a new thermal aerogel-based render under distinct climatic conditions
Abstract
Silica-aerogel is one of the nanomaterials that contributes to increasing the thermal properties, due to its high porosity and low density, and also low thermal conductivity. The development of innovative thermal renderings is a current trend, but their impact on the hygrothermal performance of facade systems requires additional investigation. The main goal of the present work consists of discussing the hygrothermal performance of a new thermal aerogel-based render when applied as a component of a multilayer coating system. To achieve this objective, relevant hygrothermal properties were determined. An accurate analysis of the hygrothermal impact, considering different European climates, was also performed. A clear improvement of the thermal conductivity of the new render, at dry-state, (0.029 W/m.degrees C) was found. As the observed high open porosity (approximate to 83%) leads to a high capillary absorption coefficient (0.129 kg/m(2).s(1/2)), the prevention of moisture-related risks is a critical issue. Due to the high increase of the thermal conductivity (up to 400%), when saturated, the application of finishing materials is therefore decisive for the successful use of these renders in building envelopes. The numerical simulations highlighted significant hygrothermal risks at higher latitudes, observed by relevant temperature differences across the render thickness and significant external condensation potential.