People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Santos, Filipe Amarante Dos
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (12/12 displayed)
- 2024Programming quadric metasurfaces via infinitesimal origami maps of monohedral hexagonal tessellations
- 2020Explorative study on adaptive facades with superelastic antagonistic actuationcitations
- 2019Mechanical modeling of superelastic tensegrity braces for earthquake-proof structurescitations
- 2019Seismic performance of superelastic tensegrity braces
- 2018Toward an adaptive vibration absorber using shape-memory alloys, for civil engineering applicationscitations
- 2018Superelastic tensegrities: matrix formulation and antagonistic actuationcitations
- 2017Shape-memory alloys as macrostrain sensorscitations
- 2016FE Exploratory Investigation on the Performance of SMA-Reinforced Laminated Glass Panelscitations
- 2016Toward a Novel SMA-reinforced Laminated Glass Panelcitations
- 2016Buckling control using shape-memory alloy cablescitations
- 2010Comparison Between Two SMA Constitutive Models for Seismic Applications
- 2008Numerical simulation of superelastic shape memory alloys subjected to dynamic loadscitations
Places of action
Organizations | Location | People |
---|
article
Mechanical modeling of superelastic tensegrity braces for earthquake-proof structures
Abstract
<p>This paper presents a novel application of tensegrity systems as lightweight and noninvasive braces for seismically resistant structures. The analyzed braces consist of D-bar systems equipped with shape memory alloy cables with superelastic response. These structures are able to markedly amplify the applied longitudinal displacements in the transverse direction, thus allowing for considerably large deformations of the SMA cables and high energy dissipation. The mechanics and the application of tensegrity braces for the reinforcement of anti-seismic structures are presented. A comparative study matches the seismic response of the analyzed systems with that of devices employing fluid viscous dampers. The results highlight the fact that D-bar units can be profitably employed as building blocks for innovative bracing systems, whose energy dissipation properties can easily surpass those of conventional anti-seismic braces.</p>