Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Kunin, Valentin

  • Google
  • 1
  • 4
  • 44

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (1/1 displayed)

  • 2016Static and dynamic elastic properties of fractal-cut materials44citations

Places of action

Chart of shared publication
Deymier, Pierre
1 / 2 shared
Yang, Shu
1 / 5 shared
Srolovitz, David
1 / 65 shared
Cho, Yigil
1 / 1 shared
Chart of publication period
2016

Co-Authors (by relevance)

  • Deymier, Pierre
  • Yang, Shu
  • Srolovitz, David
  • Cho, Yigil
OrganizationsLocationPeople

article

Static and dynamic elastic properties of fractal-cut materials

  • Deymier, Pierre
  • Yang, Shu
  • Srolovitz, David
  • Kunin, Valentin
  • Cho, Yigil
Abstract

We investigate the static and dynamic (phononic) elastic behavior of fractal-cut materials. These materials are novel in the sense that they deform by rotation of "rigid" units rather than by straining these units, can be fabricated by exploiting a simple cutting paradigm, and have properties that can be manipulated by control of the cut pattern and its hierarchy. We show that variation of fractal-cut level and cut pattern can be exploited to manipulate the symmetry of the elastic constant tensor, the elastic limit of deformation, and, therefore, the elastic response. By studying phonon behavior, we demonstrate how some cut symmetries naturally open acoustic band gaps. Several of the important features of the band structure can be directly related to the static elastic properties. Based upon our phonon calculations, we predict the acoustic transmission spectrum of an example fractal-cut structure and validated it through 3D printing and sound attenuation experiments.

Topics
  • experiment
  • band structure