Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Liontas, Rachel

  • Google
  • 1
  • 6
  • 24

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (1/1 displayed)

  • 2015Surface roughness imparts tensile ductility to nanoscale metallic glasses24citations

Places of action

Chart of shared publication
Chen, David Z.
1 / 1 shared
Branicio, Paulo S.
1 / 5 shared
Joshi, Shailendra P.
1 / 1 shared
Adibi, Sara
1 / 2 shared
Greer, Julia R.
1 / 8 shared
Srolovitz, David
1 / 65 shared
Chart of publication period
2015

Co-Authors (by relevance)

  • Chen, David Z.
  • Branicio, Paulo S.
  • Joshi, Shailendra P.
  • Adibi, Sara
  • Greer, Julia R.
  • Srolovitz, David
OrganizationsLocationPeople

article

Surface roughness imparts tensile ductility to nanoscale metallic glasses

  • Chen, David Z.
  • Branicio, Paulo S.
  • Liontas, Rachel
  • Joshi, Shailendra P.
  • Adibi, Sara
  • Greer, Julia R.
  • Srolovitz, David
Abstract

Experiments show an intriguing brittle-to-ductile transition on size reduction on nanoscale metallic glasses (MGs). Here we demonstrate that such phenomena is linked to a fundamental characteristic size effect in the failure mode under tensile loading. Large-scale molecular dynamics simulations reveal that nanoscaled MGs with atomistically smooth surfaces exhibit catastrophic failure via sharp, localized shear band propagation. In contrast, nanosized specimens with surface imperfections exhibit a clear transition from shear banding to necking instability above a critical roughness ratio of ξ~ 1/20, defined as the ratio between the average surface imperfection size and sample diameter. The observed brittle-to-ductile transition that emerges in nanosized MGs deformed at room temperature can be strongly attributed to this roughness argument. In addition, the results suggest that the suppression of brittle failure may be scale-free and be realizable on length scales much beyond those considered here, provided the threshold roughness ratio is exceeded. The fundamental critical roughness ratio demonstrated sheds light on the complex mechanical behavior of amorphous metals and has implications for the application of MGs in nano- and micro-devices.

Topics
  • impedance spectroscopy
  • surface
  • amorphous
  • experiment
  • simulation
  • glass
  • glass
  • molecular dynamics
  • ductility