People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Tammelin, Tekla
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (26/26 displayed)
- 2024Interfacial Engineering of Soft Matter Substrates by Solid-State Polymer Adsorption
- 2024Advanced nanocellulose-based electrochemical sensor for tetracycline monitoringcitations
- 2023Protein Adsorption and Its Effects on Electroanalytical Performance of Nanocellulose/Carbon Nanotube Composite Electrodescitations
- 2022Pilot-scale modification of polyethersulfone membrane with a size and charge selective nanocellulose layercitations
- 2022Pilot-scale modification of polyethersulfone membrane with a size and charge selective nanocellulose layercitations
- 2021Functionalized Nanocellulose/Multiwalled Carbon Nanotube Composites for Electrochemical Applicationscitations
- 2020Upcycling Poultry Feathers with (Nano)cellulose:Sustainable Composites Derived from Nonwoven Whole Feather Preformscitations
- 2019Cationic starch as strengthening agent in nanofibrillated and bacterial cellulose nanopapers
- 2018Structural distinction due to deposition method in ultrathin films of cellulose nanofibrescitations
- 2018Foam-formed fibre materials
- 2018Effect of cellulosic fibers on foam dynamics
- 2017Strongly reduced thermal conductivity in hybrid ZnO/nanocellulose thin filmscitations
- 2017Sample geometry dependency on the measured tensile properties of cellulose nanopaperscitations
- 2017In situ TEMPO surface functionalization of nanocellulose membranes for enhanced adsorption of metal ions from aqueous mediumcitations
- 2015Phase behaviour and stability of nanocellulose stabilized oil-in-water emulsions
- 2015Correlation between cellulose thin film supramolecular structures and interactions with watercitations
- 2014Nanofibrillated cellulose, poly(vinyl alcohol), montmorillonite clay hybrid nanocomposites with superior barrier and thermomechanical propertiescitations
- 2012Nano-fibrillated cellulose vs bacterial cellulose
- 2012High performance cellulose nanocompositescitations
- 2012High performance cellulose nanocomposites:Comparing the reinforcing ability of bacterial cellulose and nanofibrillated cellulosecitations
- 2012Nano-fibrillated cellulose vs bacterial cellulose:Reinforcing ability of nanocellulose obtained topdown or bottom-up
- 2011Quantitative assessment of the enzymatic degradation of amorphous cellulose by using a quartz crystal microbalance with dissipation monitoringcitations
- 2011Nanocomposite packaging materials from polysaccharides and montmorillonite
- 2010Multifunctional barrier films and coatings from biopolymers via enzymatic modification
- 2010Bio-hybrid nanocomposite coatings from polysaccharides and nanoclay
- 2003Adsorption of cationic starch on anionic silica studied by QCM-D ; Kationisen tärkkelyksen adsorptio anioniselle SiO2-pinnalle
Places of action
Organizations | Location | People |
---|
article
Advanced nanocellulose-based electrochemical sensor for tetracycline monitoring
Abstract
| openaire: EC/H2020/824070/EU//CONNECT ; Antibiotics play a pivotal role in healthcare and agriculture, but their overuse and environmental presence pose critical challenges. Developing sustainable and effective detection methodologies is crucial to mitigating antibiotic resistance and environmental contamination. This study presents a cellulosic polymer-based electrochemical sensor by integrating TEMPO-oxidized cellulose nanofibers-polyethyleneimine hybrids (TOCNFs-PEI) with single-walled carbon nanotube networks (SWCNTs). Our research focuses on (i) conducting physicochemical and electrochemical studies of multifunctional SWCNT/TOCNFs-PEI architectures, (ii) elucidating the relationships between the material's properties and their electrochemical performance, and (iii) assessing its performance in detecting tetracycline concentrations in both controlled and more complex matrices (treated wastewater effluents). The limits of detection were evaluated to be 0.180 µmol L−1 (at the potential of 0.85 V) and 0.112 µmol L−1 (at the potential of 0.65 V) in phosphate-buffered saline solution, and 2.46 µmol L−1 (at the potential of 0.82 V) and 1.5 µmol L−1 (at the potential of 0.65 V) in the undiluted membrane bioreactor effluent sample, respectively. Further, the designed cellulosic polymer-based sensing architecture is compatible with large-scale production, paving the way for a new era of green, versatile sensing devices. These developments will significantly contribute to global efforts to alleviate antibiotic resistance and environmental contamination. ; Peer reviewed