People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Kousar, Ayesha
Aalto University
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (7/7 displayed)
- 2024Advanced nanocellulose-based electrochemical sensor for tetracycline monitoringcitations
- 2024Enhancing electrocatalytic activity in metallic thin films through surface segregation of carboncitations
- 2024Ni Drastically Modifies the Microstructure and Electrochemistry of Thin Ti and Cr Layerscitations
- 2024Effect of etchant gases on the structure and properties of carbon nanofiberscitations
- 2023Enhancing electrocatalytic activity in metallic thin films through surface segregation of carboncitations
- 2023Interface matters - Effects of catalyst layer metallurgy on macroscale morphology and electrochemical performance of carbon nanofiber electrodescitations
- 2021Nanostructured Geometries Strongly Affect Fouling of Carbon Electrodescitations
Places of action
Organizations | Location | People |
---|
article
Advanced nanocellulose-based electrochemical sensor for tetracycline monitoring
Abstract
| openaire: EC/H2020/824070/EU//CONNECT ; Antibiotics play a pivotal role in healthcare and agriculture, but their overuse and environmental presence pose critical challenges. Developing sustainable and effective detection methodologies is crucial to mitigating antibiotic resistance and environmental contamination. This study presents a cellulosic polymer-based electrochemical sensor by integrating TEMPO-oxidized cellulose nanofibers-polyethyleneimine hybrids (TOCNFs-PEI) with single-walled carbon nanotube networks (SWCNTs). Our research focuses on (i) conducting physicochemical and electrochemical studies of multifunctional SWCNT/TOCNFs-PEI architectures, (ii) elucidating the relationships between the material's properties and their electrochemical performance, and (iii) assessing its performance in detecting tetracycline concentrations in both controlled and more complex matrices (treated wastewater effluents). The limits of detection were evaluated to be 0.180 µmol L−1 (at the potential of 0.85 V) and 0.112 µmol L−1 (at the potential of 0.65 V) in phosphate-buffered saline solution, and 2.46 µmol L−1 (at the potential of 0.82 V) and 1.5 µmol L−1 (at the potential of 0.65 V) in the undiluted membrane bioreactor effluent sample, respectively. Further, the designed cellulosic polymer-based sensing architecture is compatible with large-scale production, paving the way for a new era of green, versatile sensing devices. These developments will significantly contribute to global efforts to alleviate antibiotic resistance and environmental contamination. ; Peer reviewed