Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Gimenez-Garcia, Inmaculada

  • Google
  • 1
  • 1
  • 2

Eindhoven University of Technology

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (1/1 displayed)

  • 2024Elucidating the influence of electrolyte additives on iron electroplating performance2citations

Places of action

Chart of shared publication
Forner-Cuenca, Antoni
1 / 8 shared
Chart of publication period
2024

Co-Authors (by relevance)

  • Forner-Cuenca, Antoni
OrganizationsLocationPeople

article

Elucidating the influence of electrolyte additives on iron electroplating performance

  • Forner-Cuenca, Antoni
  • Gimenez-Garcia, Inmaculada
Abstract

Iron electroplating is great interest for multiple large-scale industrial and emerging energy applications, such as all-iron redox flow batteries. However, the process efficiency and material lifetime are limited by the poorly understood plating process and the presence of competitive reactions. In this work, we propose a methodology to deconvolute the nucleation parameters of iron plating via a suite of electrochemical techniques, spectroscopy, and analytical models, coupled with microscopic and crystallographic techniques. We perform a systematic analysis with iron-based electrolytes to deconvolute the simultaneous plating and hydrogen evolution reactions, and investigate an array of additives to tune electroplating descriptors. We find that all additives studied are able to regulate the plating process and that highly stable iron-complexes based on buffers, such as iron-borates or -citrates deliver greater overall electroplating performance. These additives show superior selectivity, with improvements in faradaic efficiencies from 60 % to ∼90 % due to the balanced effects of enhanced nucleation and side reaction suppression. Herewith, the aim of this study is to bridge the knowledge gap between the role of additives, kinetics and efficiency of the electrodeposition reaction, and their interplay defining the quality of the resulting plated layers.

Topics
  • impedance spectroscopy
  • Hydrogen
  • iron
  • electrodeposition