People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Kubicki, Maciej
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (20/20 displayed)
- 2024In vitro anticancer, antioxidant, antimicrobial, antileishmanial, enzymes inhibition and in vivo anti-inflammatory activities of organotin(IV) derivatives of 4-bromophenoxyacetic acidcitations
- 2024Self-assembly of simple Schiff base ligand into unique saddle-type [4x4] tetranuclear architecture and its application as selective voltammetric dopamine sensor in aqueous conditionscitations
- 2023New N4-Donor Ligands as Supramolecular Guests for DNA and RNA: Synthesis, Structural Characterization, In Silico, Spectrophotometric and Antimicrobial Studiescitations
- 2021Electropolymerization of [2 × 2] grid-type cobalt(II) complex with thiophene substituted dihydrazone ligandcitations
- 2019Complexation behavior of 6,6″-dimethyl-2,2′:6′,2″-terpyridine ligand with Co(II), Au(III), Ag(I), Zn(II) and Cd(II) ions: Synthesis, spectroscopic characterization and unusual structural motifscitations
- 2019Solid-state supramolecular architectures of a series of Hg(II) halide coordination compounds based on hydroxyl-substituted Schiff base ligandscitations
- 2018Coordination properties of N,N′-bis(5-methylsalicylidene)-2-hydroxy-1,3-propanediamine with d- and f-electron ions: crystal structure, stability in solution, spectroscopic and spectroelectrochemical studiescitations
- 2018Co(III), V(IV) and Cu(II) complexes of bidentate N,O-donor Schiff base ligands: Characterization, anticancer activities and metal oxide nanoparticles preparation via solid state thermal decompositioncitations
- 2018Synthesis, X-ray crystallography, thermogravimetric analysis and spectroscopic characterization of isostructural one-dimensional coordination polymers as sorbents for some anionscitations
- 2018Recurrent supramolecular motifs in discrete complexes and coordination polymers based on mercury halides: prevalence of chelate ring stacking and substituent effectscitations
- 2017A mechanistic study on unexpected and solvent-based pH-tuneable role of benzylic pendant side-arm on N2O2-donor naphthodiaza-crown macrocyclic ligand as a sensitive fluorogenic chemosensor for Al3+ in aqueous solutioncitations
- 2017Dipyrromethane functionalized monomers as precursors of electrochromic polymerscitations
- 2017The spectroscopic studies of new polymeric complexes of silver(I) and original mononuclear complexes of lanthanides(III) with benzimidazole-based hydrazonecitations
- 2016Utilization of a new gold/Schiff-base iron(iii) complex composite as a highly sensitive voltammetric sensor for determination of epinephrine in the presence of ascorbic acidcitations
- 2015Two types of lanthanide Schiff base complexes: Synthesis, structure and spectroscopic studiescitations
- 2015Different supramolecular architectures in self-assembled praseodymium(III) and europium(III) complexes with rare coordination pattern of salicylaldimine ligandcitations
- 2015Supramolecular polymer of Schiff base gadolinium complex: Synthesis, crystal structure and spectroscopic propertiescitations
- 2013New complexes of cobalt(II) ions with pyridinecarboxylic acid N-oxides and 4,4′-bypcitations
- 2013Mono-, di- and trinuclear complexes of bis(terpyridine) ligand: Synthesis, crystal structures and magnetic propertiescitations
- 2012Synthesis, complexation studies and structural characterization of d and f metal ion complexes with 4-chloroquinaldinic acid N-oxidecitations
Places of action
Organizations | Location | People |
---|
article
Self-assembly of simple Schiff base ligand into unique saddle-type [4x4] tetranuclear architecture and its application as selective voltammetric dopamine sensor in aqueous conditions
Abstract
Dopamine, a crucial catecholamine neurotransmitter, plays essential roles in the operation of the central nervous system in humans. Disrupted dopamine release is associated with neurological disorders and depression, therefore monitoring of dopamine levels is imperative for preliminary disease detection. Development of sensitive and selective sensors for neurotransmitters that function under aqueous conditions is however still challenging, mostly due to the complexity of hybrid nanomaterials that are interacting with the electrode. Here we provide a coordination compound constructed from simple substrates, where subcomponent self-assembly leads to a unique, discrete [4 × 4] saddle-type complex [Cu4(L-H)4(BF4)2(MeOH)2](BF4)2, which was characterized by ESI-MS and FT-IR techniques, including single crystal X-ray diffraction. The Cu4L4 complex was subsequently used for modification of the bare Au electrode based on its accumulation on the electrode surface. The new voltammetric sensor (Au/complex) was applied for dopamine detection alone and in the presence of interfering ascorbic acid by using the Differential Pulse Voltammetry (DPV) techniques under aqueous conditions. In the linear dynamic range (LDR) range from 0.0001 mM to 0.75 mM the dependence of the peak current on dopamine concentration satisfied the following linear regression equation: ip [mA] = 17∙10−2 cDA [mM] + 8∙10−2 (R2 = 0.998). Moreover, the excellent limit of dopamine detection (LOD) and the limit of its quantification (LOQ) were established at the level of 5.4 nM and 18.0 nM with accomplished high sensitivity 0.17 A M−1, repeatability as well as reproducibility. Clear separation of the voltammetric signal of dopamine from this one of ascorbic acid, even in the presence of a 100-fold excess of interfering ions found in water, consequently proves that the new prepared sensor can be used as an excellent analytical tool for selective detection of dopamine and ascorbic acid coexisting in the tested samples.