Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Graefschepe, Niels Van

  • Google
  • 2
  • 3
  • 11

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (2/2 displayed)

  • 2023Comparative study of electroreduction of iron oxide using acidic and alkaline electrolytes for sustainable iron production11citations
  • 2022Experimental Study of Iron Oxide Electroreduction with Different Cathode Materialcitations

Places of action

Chart of shared publication
Finotello, Giulia
2 / 21 shared
Deen, Niels G.
2 / 22 shared
Tang, Yali
2 / 17 shared
Chart of publication period
2023
2022

Co-Authors (by relevance)

  • Finotello, Giulia
  • Deen, Niels G.
  • Tang, Yali
OrganizationsLocationPeople

article

Comparative study of electroreduction of iron oxide using acidic and alkaline electrolytes for sustainable iron production

  • Graefschepe, Niels Van
  • Finotello, Giulia
  • Deen, Niels G.
  • Tang, Yali
Abstract

Sustainable iron production is largely driven by the urgency to reduce the extensive energy consumption and emissions in the iron/steel sectors. Low temperature electroreduction of iron oxide technology is thus revived since it directly utilizes (green) electrical energy with a competitive energy consumption compared to the thermochemical reduction approach. In the present work, we perform theoretical and experimental studies for comparison of electroreduction of iron oxide in aqueous alkaline and acidic electrolytes. Electrochemical reduction and deposition behavior are experimentally investigated using a lab scale cell containing an electrolyte suspended with micron-sized Fe2O3 (hematite) powders. The effects of current density and hematite mass fraction on current efficiency are evaluated, as well as the total energy consumption. Results of chronopotentiometry and cyclic voltammograms (CV) reveal the electrochemical properties of each system. The CV’s cathodic peaks, corresponding to the reduction of iron oxides to iron, are observed only in the alkaline system where the iron oxide can be reduced at about − 1.4 V (vs. Ag/AgCl). It is also found that the alkaline system has higher current efficiency (25–30% higher) and lower energy consumption (~30% lower) than the acidic system. The cleaning of the deposit is also easier for the alkaline system, resulting in an iron product of high purity. Concerning the electrochemical performances and practicality, the alkaline electroreduction system shows promising potential for sustainable iron production.

Topics
  • Deposition
  • density
  • impedance spectroscopy
  • steel
  • iron
  • current density