Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Brontvein, Olga

  • Google
  • 3
  • 13
  • 11

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (3/3 displayed)

  • 2024A Gd-doped ceria/TiOx nanocomposite as the active layer in a three terminal electrochemical resistivity switch.2citations
  • 2024Guided CdTe Nanowires Integrated into Fast Near-Infrared Photodetectors6citations
  • 2022Electronic interactions and stability issues at the copper-graphene interface in air and in alkaline solution under electrochemical control3citations

Places of action

Chart of shared publication
Ehre, David
1 / 8 shared
Kossoy, Anna
1 / 5 shared
Houben, Lothar
1 / 16 shared
Varenik, Maxim
1 / 8 shared
Wachtel, Ellen
1 / 7 shared
Frenkel, Anatoly I.
1 / 5 shared
Freidzon, Daniel
1 / 1 shared
Danieli, Yarden
1 / 2 shared
Sanders, Ella
1 / 4 shared
Cohen, Sidney
1 / 29 shared
Weatherup, Robert S.
1 / 7 shared
Khatun, Salma
1 / 3 shared
Andrés, Miguel A.
1 / 2 shared
Chart of publication period
2024
2022

Co-Authors (by relevance)

  • Ehre, David
  • Kossoy, Anna
  • Houben, Lothar
  • Varenik, Maxim
  • Wachtel, Ellen
  • Frenkel, Anatoly I.
  • Freidzon, Daniel
  • Danieli, Yarden
  • Sanders, Ella
  • Cohen, Sidney
  • Weatherup, Robert S.
  • Khatun, Salma
  • Andrés, Miguel A.
OrganizationsLocationPeople

article

Electronic interactions and stability issues at the copper-graphene interface in air and in alkaline solution under electrochemical control

  • Brontvein, Olga
  • Cohen, Sidney
  • Weatherup, Robert S.
  • Khatun, Salma
  • Andrés, Miguel A.
Abstract

<p>A micro-electrochemical cell is sealed with a polymer-free single-layer graphene (SLG) membrane to monitor the stability of Cu nanoparticles (NPs) attached to SLG, as well as the interfacial electronic interactions between Cu NPs and SLG both in air and in a mildly alkaline aqueous solution under electrochemical control. A combination of techniques, including in-situ Kelvin probe force microscopy (KPFM) and ex-situ electron microscopy, are applied. When Cu NPs are metallic at cathodic potentials, there is a relatively bias-independent offset in the SLG work function due to charge transfer at the Cu-SLG contact. When Cu NPs are oxidized at anodic potentials, on the other hand, the work function of SLG also depends on the applied bias in a quasi-linear fashion due to electrochemical gating, in addition to charge transfer at the CuO<sub>x</sub>-SLG contact. Furthermore, Cu NPs were found to oxidize and detach from SLG when kept under anodic potentials for a few hours, whereas they remain adhered to SLG at cathodic potentials. This is attributed to water intercalation at the CuO-SLG interface associated with the enhanced hydrophilicity of positively polarized graphene, as supported by the absence of Cu detachment following oxidation by galvanic corrosion in air.</p>

Topics
  • nanoparticle
  • impedance spectroscopy
  • polymer
  • copper
  • electron microscopy
  • interfacial
  • Kelvin probe force microscopy
  • galvanic corrosion