People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Kosari, Ali
Thermo Fisher Scientific (Netherlands)
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (14/14 displayed)
- 2022Evaluation of the formation and protectiveness of a lithium-based conversion layer using electrochemical noisecitations
- 2022Localised aqueous corrosion of electroless nickel immersion gold-coated coppercitations
- 2022Microstructure, mechanical, and corrosion properties of Zr1-xCrxBy diboride alloy thin films grown by hybrid high power impulse/DC magnetron co-sputteringcitations
- 2021Editors' Choice - Dealloying-Driven Cerium Precipitation on Intermetallic Particles in Aerospace Aluminium Alloyscitations
- 2021Nanoscopic and in-situ cross-sectional observations of Li-based conversion coating formation using liquid-phase TEMcitations
- 2021Laterally-resolved formation mechanism of a lithium-based conversion layer at the matrix and intermetallic particles in aerospace aluminium alloyscitations
- 2020Dealloying-driven local corrosion by intermetallic constituent particles and dispersoids in aerospace aluminium alloyscitations
- 2020In-situ nanoscopic observations of dealloying-driven local corrosion from surface initiation to in-depth propagationcitations
- 2020Cross-sectional characterization of the conversion layer formed on AA2024-T3 by a lithium-leaching coatingcitations
- 2020Corrosion resistance of hot-dip galvanized steel in simulated soil solutioncitations
- 2020Effect of simulated brazing on the microstructure and corrosion behavior of twin roll cast AA3003citations
- 2019Characterization of the passive layer on ferrite and austenite phases of super duplex stainless steelcitations
- 2019Effect of brazing on the microstructure and corrosion behaviour of a twin roll cast Al-Mn-Fe-Si alloy system
- 2018Enhanced corrosion protection of mild steel by the synergetic effect of zinc aluminum polyphosphate and 2-mercaptobenzimidazole inhibitors incorporated in epoxy-polyamide coatingscitations
Places of action
Organizations | Location | People |
---|
article
Evaluation of the formation and protectiveness of a lithium-based conversion layer using electrochemical noise
Abstract
<p>The formation process of a lithium-based conversion layer on AA2024-T3 and its corrosion protective behavior are studied using electrochemical noise (EN). Wavelet transform, as well as noise resistance analysis, have been employed to interpret the EN data. The EN data confirmed five different stages during the conversion layer growth, accompanied by anodic dissolution, increasing corrosion protection of the conversion layer, and adsorption, growth and desorption of hydrogen bubbles simultaneously. The detachment of hydrogen bubbles, localized and uniform corrosion generate different features in the EN signals with energy maxima in high, intermediate and low frequency bands, respectively. In addition, EN results show that the lithium-based conversion layer still provides efficient protection after re-immersion in a corrosive environment, even though localized damage occurs. Moreover, the EN data corresponds well with the morphological layer formation and breakdown observed with microscopy techniques. The results demonstrate that EN is a powerful tool to provide continuous time- and frequency-resolved information about inhibition efficiency.</p>