People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Hélix-Nielsen, Claus
Technical University of Denmark
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (14/14 displayed)
- 2023Facile Fabrication of Flexible Ceramic Nanofibrous Membranes for Enzyme Immobilization and Transformation of Emerging Pollutantscitations
- 2023Facile Fabrication of Flexible Ceramic Nanofibrous Membranes for Enzyme Immobilization and Transformation of Emerging Pollutantscitations
- 2023Synthesis of magnetic nanoparticles with covalently bonded polyacrylic acid for use as forward osmosis draw agentscitations
- 2022Concentrating hexavalent chromium electroplating wastewater for recovery and reuse by forward osmosis using underground brine as draw solutioncitations
- 2021Employing the synergistic effect between aquaporin nanostructures and graphene oxide for enhanced separation performance of thin-film nanocomposite forward osmosis membranescitations
- 2021Impedance characterization of biocompatible hydrogel suitable for biomimetic lipid membrane applicationscitations
- 2021Impact of sodium hypochlorite on rejection of non-steroidal anti-inflammatory drugs by biomimetic forward osmosis membranescitations
- 2019Synthesis of Poly-Sodium-Acrylate (PSA)-Coated Magnetic Nanoparticles for Use in Forward Osmosis Draw Solutionscitations
- 2016Influence of feed composition and membrane fouling on forward osmosis performance
- 2015A reusable device for electrochemical applications of hydrogel supported black lipid membranescitations
- 2015A feasibility study of ultrafiltration/reverse osmosis (UF/RO)-based wastewater treatment and reuse in the metal finishing industrycitations
- 2012Tailoring Properties of Biocompatible PEG-DMA Hydrogels with UV Lightcitations
- 2011Surface Modifications of Support Partitions for Stabilizing Biomimetic Membrane Arrayscitations
- 2011Electrochemical characterization of hydrogels for biomimetic applicationscitations
Places of action
Organizations | Location | People |
---|
article
Impedance characterization of biocompatible hydrogel suitable for biomimetic lipid membrane applications
Abstract
Hydrogels, biocompatible and hydrophilic polymeric networks, have been widely applied in, e.g., pharmaceutical and biomedical research. Their physico-chemical properties can be fine-tuned by changing the fraction and molecular structure of cross-linkers. Hydrogel layers with varying thickness have also been used to support biomimetic lipid bilayers on microfabricated electrodes for studies using electrochemical impedance spectroscopy (EIS). To provide deeper understanding of the impedimetric behavior of thick hydrogels that are covalently tethered on microfabricated electrodes and the influence of cross-linking, we present here a thorough EIS characterization of poly(2-hydroxyethyl methacrylate) hydrogels cross-linked with poly(ethylene glycol)-dimethacrylate in ratios 1:100, 1:200, and 1:400. We propose an equivalent circuit model comprising an open-boundary finite-length Warburg element and constant phase element in series to describe the mass transfer differences between the bulk hydrogel and covalently tethered domain at the electrode-hydrogel interface. The results indicated that an increased fraction of the hydrophilic high-molecular weight cross-linker significantly decreased the charge transfer resistance for hexacyanoferrate(III/II), which could be attributed to increased permeability and decreased electrode passivation due to the lower degree of tethering on the acrylate modified electrodes. Cryo-SEM visualization of the structural differences caused by cross-linking showed good agreement with the EIS results, whereas the degree of hydration of the hydrogels did not show any statistically significant differences.