Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Hu, Yang

  • Google
  • 10
  • 33
  • 400

Technical University of Denmark

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (10/10 displayed)

  • 2023Synthesis and Structure Stabilization of Disordered Rock Salt Mn/V-Based Oxyfluorides as Cathode Materials for Li-Ion Batteriescitations
  • 2023Machine learning of twin/matrix interfaces from local stress fieldcitations
  • 2021Ionic conductivity in LixTaOy thin films grown by Atomic Layer Deposition (ALD)7citations
  • 2020Ionic conductivity in LixTaOy thin films grown by atomic layer deposition7citations
  • 2020Polybenzimidazole-Based High-Temperature Polymer Electrolyte Membrane Fuel Cells: New Insights and Recent Progress150citations
  • 2020Polybenzimidazole-Based High-Temperature Polymer Electrolyte Membrane Fuel Cells: New Insights and Recent Progress150citations
  • 2020Process for producing metal alloy nanoparticlescitations
  • 2018Understanding Capacity Fading of MgH2 Conversion-Type Anodes via Structural Morphology Changes and Electrochemical Impedance12citations
  • 2017Electrical characterization of amorphous LiAlO2 thin films deposited by atomic layer deposition37citations
  • 2016Electrical characterization of amorphous LiAlO2 thin films deposited by atomic layer deposition37citations

Places of action

Chart of shared publication
Fichtner, Maximilian
1 / 26 shared
Shirazi Moghadam, Yasaman
1 / 1 shared
El Kharbachi, Abdel
1 / 1 shared
Wang, Kai
1 / 12 shared
Blumenhofer, Iris
1 / 1 shared
Della Ventura, Nicolò M.
1 / 2 shared
Maeder, Xavier
1 / 52 shared
Sharma, Amit
1 / 26 shared
Troncoso, Javier F.
1 / 2 shared
Turlo, Vladyslav
1 / 16 shared
Nilsen, Ola
4 / 31 shared
Fjellvåg, Helmer
3 / 34 shared
Miikkulainen, Ville
4 / 28 shared
Norby, Truls Eivind
1 / 14 shared
Mizohata, Kenichiro
2 / 99 shared
Norby, Truls
3 / 18 shared
Henkensmeier, Dirk
2 / 5 shared
Li, Qingfeng
3 / 28 shared
Fernandez, Santiago Martin
1 / 2 shared
Cleemann, Lars Nilausen
2 / 9 shared
Aili, David
2 / 16 shared
Singh, Bhupendra
2 / 2 shared
Jensen, Jens Oluf
3 / 25 shared
Martin Fernandez, Santiago
1 / 1 shared
Cleeman, Lars Nilausen
1 / 1 shared
Brandes, Benedikt Axel
1 / 2 shared
Hauback, Bjørn
1 / 8 shared
Vullum, Per Erik
1 / 23 shared
Mæhlen, Jan Petter
1 / 5 shared
Sørby, Magnus Helgerud
1 / 10 shared
El-Kharbachi, Abdelouahab
1 / 4 shared
Ruud, Amund
2 / 9 shared
Fjellvag, Helmer
2 / 8 shared
Chart of publication period
2023
2021
2020
2018
2017
2016

Co-Authors (by relevance)

  • Fichtner, Maximilian
  • Shirazi Moghadam, Yasaman
  • El Kharbachi, Abdel
  • Wang, Kai
  • Blumenhofer, Iris
  • Della Ventura, Nicolò M.
  • Maeder, Xavier
  • Sharma, Amit
  • Troncoso, Javier F.
  • Turlo, Vladyslav
  • Nilsen, Ola
  • Fjellvåg, Helmer
  • Miikkulainen, Ville
  • Norby, Truls Eivind
  • Mizohata, Kenichiro
  • Norby, Truls
  • Henkensmeier, Dirk
  • Li, Qingfeng
  • Fernandez, Santiago Martin
  • Cleemann, Lars Nilausen
  • Aili, David
  • Singh, Bhupendra
  • Jensen, Jens Oluf
  • Martin Fernandez, Santiago
  • Cleeman, Lars Nilausen
  • Brandes, Benedikt Axel
  • Hauback, Bjørn
  • Vullum, Per Erik
  • Mæhlen, Jan Petter
  • Sørby, Magnus Helgerud
  • El-Kharbachi, Abdelouahab
  • Ruud, Amund
  • Fjellvag, Helmer
OrganizationsLocationPeople

article

Ionic conductivity in LixTaOy thin films grown by atomic layer deposition

  • Nilsen, Ola
  • Fjellvåg, Helmer
  • Norby, Truls
  • Miikkulainen, Ville
  • Mizohata, Kenichiro
  • Hu, Yang
Abstract

The material system Li-Ta-O is a promising candidate for thin-film solid-state electrolytes in Li-ion batteries. In the present study, we have varied the Li content x in LixTaOy thin films grown by atomic layer deposition (ALD) with the aim of improving the Li-ion conductivity. The amorphous films were grown at 225 degrees C on insulating sapphire and on conductive Ti substrates using tantalum ethoxide (Ta(OEt)(5)), lithium tert-butoxide ((LiOBu)-Bu-t) and water as reactants. The film composition was determined by time-of-flight elastic recoil detection analysis (TOF-ERDA), displaying an almost linear relationship between the pulsed and deposited Li content. The ionic conductivities were determined by in-plane and cross-plane AC measurements, exhibiting an Arrhenius-type behaviour and comparatively weak thickness-dependence. Increasing Li content x from 0.32 to 0.98 increases the film conductivity by two orders of magnitude while higher Li content x = 1.73 results in decreased conductivity. A room-temperature conductivity ciRT of similar to 10(-8) S cm(-1) is obtained for a 169 nm thick Li0.98TaOy film. The evolution of conductivity and activation energy suggests a competing effect between the concentration and the mobility of mobile Li ions when more Li are incorporated. The compositional dependence of Li transport mechanism is discussed. (C) 2020 The Author(s). Published by Elsevier Ltd. ; Peer reviewed

Topics
  • impedance spectroscopy
  • amorphous
  • mobility
  • thin film
  • Lithium
  • activation
  • tantalum
  • atomic layer deposition