Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Reeves, Simon

  • Google
  • 1
  • 4
  • 9

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (1/1 displayed)

  • 2020Chloroantimonate electrochemistry in dichloromethane9citations

Places of action

Chart of shared publication
Zhang, Wenjian
1 / 12 shared
Bartlett, Philip N.
1 / 41 shared
Noori, Yasir Jamal
1 / 11 shared
Reid, Gillian
1 / 50 shared
Chart of publication period
2020

Co-Authors (by relevance)

  • Zhang, Wenjian
  • Bartlett, Philip N.
  • Noori, Yasir Jamal
  • Reid, Gillian
OrganizationsLocationPeople

article

Chloroantimonate electrochemistry in dichloromethane

  • Zhang, Wenjian
  • Bartlett, Philip N.
  • Noori, Yasir Jamal
  • Reid, Gillian
  • Reeves, Simon
Abstract

Antimony is a technologically relevant element, which is present in many semiconductor materials. Electrodeposition of such materials offers a potential route for cheaper and less wasteful manufacturing, and is especially suited for micro- and nano-feature sizes with complex geometries. Previous work has shown the applicability of electrodeposition of p-block metals and metalloids from the weakly coordinating solvent dichloromethane, using halometallate precursors. Here we more thoroughly investigate the behaviour of the tetrabutylammonium chloroantimonate precursor, [TBA][SbCl4]. We use voltammetry at a stationary macroelectrode, rotating disc electrode and electrochemical quartz crystal microbalance, as well as microelectrodes and highlight the advantages of microelectrodes in this context. Using [TBA]Cl as a background electrolyte it is found that the diffusion coefficients calculated from the rotating disc electrode and microelectrodes are similar. Due to the possibility of mixed speciation with an excess of Cl−, tetrabutylammonium tetrafluoroborate, [TBA][TFB], is also used as a background electrolyte and it is found that the diffusion coefficient does not change. Using a modified form of the Stokes-Einstein equation, that takes into account the shape of the solute and the relative sizes of the solute and solvent, the diffusion coefficients of the antimony precursor and decamethylferrocene are consistent with their relative sizes. Electrodeposition onto large surface area platinum and titanium nitride substrates using either background electrolyte results in amorphous deposits of elemental antimony with similar morphology.

Topics
  • impedance spectroscopy
  • surface
  • amorphous
  • Platinum
  • semiconductor
  • laser emission spectroscopy
  • nitride
  • titanium
  • electrodeposition
  • voltammetry
  • Antimony