People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Gharbi, Oumaïma
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (23/23 displayed)
- 2024On the corrosion resistance of the CoCrFeMnNi high entropy alloys in chloride-containing sulfuric acid solutionscitations
- 2024Triple structuration and enhanced corrosion performance of 316L in Laser-Powder Bed Fusioncitations
- 2024On the chemistry of the conversion coatingscitations
- 2024Accelerated Discovery of Corrosion Resistant Materials for Molten Salt Applications
- 2023Ionic liquid route for the corrosion inhibition of Al alloys: the effect of butylammonium nitrate on the corrosion of AA2024-T6citations
- 2023Relantionship between the feedstock powders reactivity and the Electrochemical properties of 316L Stainless steel obtained by laser powder bed fusion
- 2022On the graphical analysis of the impedance response of passive electrodes
- 2022Micro Droplet Corrosion: Measuring Changes in Wetting and Surface Area during Electrochemical Measurements
- 2021Ionic liquids as environmentally friendly corrosion inhibitors : the inhibition of mechanism of butylammonium nitrate for Al AA2024-T6
- 2021The ionic liquid route for the development of environmentally friendly corrosion inhibitors : the inhibition of mechanism of ammonium and amino-acid based ionic liquids for high strength al alloys
- 2021Understanding the pH effect on the magnesium corrosion by means of electrochemical impedance spectroscopy
- 2021On the impedance response of a passive electrode : what is the influence of the double layer capacitance
- 2020Investigating the real-time dissolution of a compositionally complex alloy using inline ICP and correlation with XPScitations
- 2020Real-time dissolution of a compositionally complex alloy using inline ICP and correlation with XPScitations
- 2019From frequency dispersion to ohmic impedance: A new insight on the high-frequency impedance analysis of electrochemical systemscitations
- 2019Ohmic impedance : myth or reality?
- 2019On the determination of the capacitance of an interface: What can we get from cyclic voltammetry and impedance measurements?
- 2019Corrosion inhibition of a high strength AI alloy AA2024 by ionic liquids : impact of propylammonium nitrate on the onset of localized corrosion
- 2019Microstructure and corrosion evolution of additively manufactured aluminium alloy AA7075 as a function of ageingcitations
- 2019Microstructure and corrosion evolution of additively manufactured aluminium alloy AA7075 as a function of ageingcitations
- 2019On the determination of the capacitance of an interface:What can we get from cyclic voltammetry and impedance measurements?
- 2016In-situ investigation of elemental corrosion reactions during the surface treatment of Al-Cu and Al-Cu-Li alloys.
- 2016In-situ investigation of elemental corrosion reactions during the surface treatment of Al-Cu and Al-Cu-Li alloys. ; Investigations in situ des mécanismes de corrosion élémentaires durant le traitement de surface des alliages Al-Cu et Al-Cu-Li
Places of action
Organizations | Location | People |
---|
article
From frequency dispersion to ohmic impedance: A new insight on the high-frequency impedance analysis of electrochemical systems
Abstract
The increasing use of impedance for the characterization of an electrified interface is accompanied by the development of accurate models to analyze the results. In the present work, the concept of ohmic impedance is revisited using both numerical simulations and experimental results. The Havriliak-Negami equation is shown to provide a good representation of the high-frequency dispersion or complex ohmic impedance associated with the disk electrode geometry. An excellent fit to simulated complex ohmic impedance was found for both capacitive electrodes and for electrodes characterized by constant-phase-element behavior. The use of the Havriliak-Negami equation to account for the complex ohmic impedance was shown to extend the useful frequency range for regression of physical models to the impedance response for three experimental systems: a gold electrode in a 0.1 M sodium sulfate solution, an aluminum electrode in a 0.01 M sodium sulfate solution, and pure iron in a 0.5 M sulfuric acid solution.