People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Strycker, Joost De
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (9/9 displayed)
- 2023Identification of carbon-containing phases in electrodeposited hard Fe–C coatings with intentionally codeposited carbon
- 2020Molecular Characterization of Bonding Interactions at the Buried Steel Oxide-Aminopropyl Triethoxysilane Interface Accessed by Ar Cluster Sputteringcitations
- 2020Molecular Characterization of Multiple Bonding Interactions at the Steel Oxide - Aminopropyl triethoxysilane Interface by ToF-SIMScitations
- 2019Chromium(iii) in deep eutectic solvents: towards a sustainable chromium(vi)-free steel plating processcitations
- 2019Influence of water content and applied potential on the electrodeposition of Ni coatings from deep eutectic solventscitations
- 2016Influence of Applied Potential, Water Content and Forced Convection on the Electrodeposition of Ni Films on Steel from Choline Chloride Based Deep Eutectic Solvents
- 2016Electrodeposition of Nickel from Deep Eutectic Solvents
- 2013Corrosion Study on Al-rich Metal-Coated Steel by Odd >Random Phase Multisine Electrochemical Impedance Spectroscopy
- 2013Mechanism of corrosion protection of hot-dip aluminium-silicon coatings on steel studied by electrochemical depth profilingcitations
Places of action
Organizations | Location | People |
---|
article
Influence of water content and applied potential on the electrodeposition of Ni coatings from deep eutectic solvents
Abstract
<p>Ni coatings were electrodeposited from 1:2 choline chloride (ChCl) - urea (U) deep eutectic solvents (DESs) on low carbon steel. We report on the inter-related influence of water content in the electrolyte and applied potential on the formation of Ni films and their chemical composition and morphology. This was investigated by cyclic voltammetry (CV) and chronoamperometry (CA) in combination with ex-situ characterization techniques (FE-SEM, EDS, XPS and Raman spectroscopy). Ni electrodeposition from DES is shown to be highly complex: Ni<sup>+2</sup> reduction is followed by water reduction, which triggers electrolyte decomposition. A water content higher than 4.5%wt and/or performing electrodeposition at potentials more negative than E = −0.90V vs Ag quasi-reference electrode enhances the decomposition of the solvent. This breakdown appears via either an electrochemical reaction or triggered by water splitting. In both cases, it leads to the incorporation of DESs decomposition products, such as trimethylamine and acetaldehyde within the Ni film. Under these conditions, the films are composed of metallic Ni and NiO<sub>x</sub>(OH)<sub>2(1−x)</sub>.</p>