Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Wills, Richard G. A.

  • Google
  • 7
  • 27
  • 939

University of Southampton

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (7/7 displayed)

  • 2022The soluble lead flow battery6citations
  • 2019Lithium titanate/pyrenecarboxylic acid decorated carbon nanotubes hybrid - Alginate gel supercapacitor23citations
  • 2014The fabrication of a bifunctional oxygen electrode without carbon components for alkaline secondary batteries37citations
  • 2013A novel bifunctional oxygen GDE for alkaline secondary batteries36citations
  • 2012Molybdophosphoric acid based nickel catalysts as bifunctional oxygen electrodes in alkaline media4citations
  • 2010Developments in the soluble lead-acid flow battery89citations
  • 2006Electrodeposition of composite coatings containing nanoparticles in a metal deposit744citations

Places of action

Chart of shared publication
James, Peter Le Houx
1 / 1 shared
Martinez, Luis Fernando Arenas
1 / 3 shared
Koralage, Ranga Dinesh Kahanda
1 / 1 shared
Fraser, Ewan
1 / 2 shared
Deepa, Melepurath
1 / 2 shared
Houx, James Le
1 / 1 shared
Ojha, Manoranjan
1 / 1 shared
Mukkabla, Radha
1 / 1 shared
Kramer, Denis
1 / 10 shared
Walsh, Frank
1 / 14 shared
Russell, Andrea E.
2 / 12 shared
Gorman, Scott
1 / 1 shared
Li, Xiaohong
2 / 8 shared
Thompson, Stephen
1 / 9 shared
Pletcher, Derek
2 / 7 shared
Price, Stephen
1 / 2 shared
Gorman, Scott F.
1 / 1 shared
Price, Stephen W. T.
1 / 1 shared
Thompson, Stephen J.
1 / 1 shared
Walsh, Frank C.
1 / 22 shared
Kourasi, M.
1 / 2 shared
Walsh, F. C.
3 / 33 shared
Shah, A. A.
1 / 2 shared
Pletcher, D.
1 / 1 shared
Low, C. T. J.
2 / 10 shared
Stratton-Campbell, D.
1 / 1 shared
Collins, J.
1 / 2 shared
Chart of publication period
2022
2019
2014
2013
2012
2010
2006

Co-Authors (by relevance)

  • James, Peter Le Houx
  • Martinez, Luis Fernando Arenas
  • Koralage, Ranga Dinesh Kahanda
  • Fraser, Ewan
  • Deepa, Melepurath
  • Houx, James Le
  • Ojha, Manoranjan
  • Mukkabla, Radha
  • Kramer, Denis
  • Walsh, Frank
  • Russell, Andrea E.
  • Gorman, Scott
  • Li, Xiaohong
  • Thompson, Stephen
  • Pletcher, Derek
  • Price, Stephen
  • Gorman, Scott F.
  • Price, Stephen W. T.
  • Thompson, Stephen J.
  • Walsh, Frank C.
  • Kourasi, M.
  • Walsh, F. C.
  • Shah, A. A.
  • Pletcher, D.
  • Low, C. T. J.
  • Stratton-Campbell, D.
  • Collins, J.
OrganizationsLocationPeople

article

Lithium titanate/pyrenecarboxylic acid decorated carbon nanotubes hybrid - Alginate gel supercapacitor

  • Wills, Richard G. A.
  • Deepa, Melepurath
  • Houx, James Le
  • Ojha, Manoranjan
  • Mukkabla, Radha
  • Kramer, Denis
Abstract

<p>A facile scalable strategy is reported for the synthesis of a hybrid of lithium titanate (Li<sub>4</sub>Ti<sub>5</sub>O<sub>12</sub>or LTO)and 1-pyrenecarboxylic acid decorated multiwalled carbon nanotubes (PCA@CNTs). LTO platelets comprising of quasi-spherical nanoparticles afford short diffusion paths for electrolyte ions. PCA@CNTs, enhance the electrical conductivity of the nearly insulating LTO by 3 orders of magnitude, thus maximizing the ion-uptake capability of the hybrid. Symmetric and asymmetric supercapacitors with the LTO/PCA@CNTs hybrid supported over Ni foam substrates are assembled with a novel Li<sup>+</sup>conducting alginate gel, in air without any inert conditions that are typically used for all LTO based devices. The gel shows an average ionic conductivity of ∼8.4 mS cm<sup>−1</sup>at room temperature, and is found to be electrochemically stable over a wide operational voltage window of ∼2.5 V. Benefitting from the synergy of electrical double layer (EDL)storage afforded by PCA@CNTs, ion-storage by LTO through a redox reaction and EDL, and the ease ion-movement across the cell due to the open architecture of CNTs, the asymmetric LTO/PCA@CNTs hybrid cell outperforms the symmetric cells by a large margin. The best areal specific capacitance (SC), volumetric SC and energy density are ∼54 mF cm<sup>−2</sup>, ∼4.3 F cm<sup>−3</sup>(at 0.5 mA cm<sup>−2</sup>)and ∼3.7 mWh cm<sup>−3</sup>(at a power density of 49.6 mW cm<sup>−3</sup>)significantly enhanced for the asymmetric LTO/PCA@CNTs hybrid cell, compared to the symmetric- PCA@CNTs and hybrid cells. The design is simple to implement and can serve as a prototype to develop a range of yet unexplored LTO/carbon nanomaterial based supercapacitors.</p>

Topics
  • nanoparticle
  • density
  • impedance spectroscopy
  • Carbon
  • energy density
  • nanotube
  • mass spectrometry
  • Lithium
  • electrical conductivity