Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Guo, Yue

  • Google
  • 2
  • 9
  • 75

University of Manchester

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (2/2 displayed)

  • 2021Plasma electrolytic oxidation of magnesium by sawtooth pulse current21citations
  • 2019Incorporation of halloysite nanotubes into forsterite surface layer during plasma electrolytic oxidation of AM50 Mg alloy54citations

Places of action

Chart of shared publication
Hird, Alexander
1 / 1 shared
Mingo, Beatriz
2 / 30 shared
Yerokhin, Aleksey
2 / 53 shared
Rogov, Aleksey B.
1 / 6 shared
Matthews, Allan
2 / 147 shared
Sun, Ming
1 / 2 shared
Němcová, Aneta
1 / 3 shared
Mohedano, Marta
1 / 18 shared
Gholinia, Ali
1 / 39 shared
Chart of publication period
2021
2019

Co-Authors (by relevance)

  • Hird, Alexander
  • Mingo, Beatriz
  • Yerokhin, Aleksey
  • Rogov, Aleksey B.
  • Matthews, Allan
  • Sun, Ming
  • Němcová, Aneta
  • Mohedano, Marta
  • Gholinia, Ali
OrganizationsLocationPeople

article

Incorporation of halloysite nanotubes into forsterite surface layer during plasma electrolytic oxidation of AM50 Mg alloy

  • Sun, Ming
  • Mingo, Beatriz
  • Yerokhin, Aleksey
  • Němcová, Aneta
  • Mohedano, Marta
  • Matthews, Allan
  • Gholinia, Ali
  • Guo, Yue
Abstract

The increasing demand for high-performance lightweight metallic materials is driving an interest in Plasma Electrolytic Oxidation (PEO) as one of the most promising techniques for surface engineering of Mg. In order to enable smart and multifunctional performance, it can be beneficial to incorporate into ceramic PEO coatings nanocontainers to carry appropriate active and functionalising agents. In situ incorporation of nanocontainers is challenging since their integrity may be compromised by plasma discharge assisting coating formation. We studied incorporation of halloysite nanotubes (HNTs) as potential nanocontainers into forsterite, Mg2SiO4, formed during PEO processing of AM50 alloy at the frequency range of 100-5000 Hz. Detailed analysis of the coating microstructure, chemical and phase composition carried out by Scanning Electron Microscopy/Energy Dispersive X-ray Spectroscopy, Transmission Kikuchi Diffraction and X-ray Diffraction enabled evaluation of a pattern of surface temperature evolution during current pulses underpinning the PEO process. Transient analysis revealed that at pulses longer than 10-4 s, the surface heating becomes affected by the metal substrate acting as a heat sink. As the pulse duration approaches 10-3 s, raising surface temperature and increasing thermal gradients across the coating cause crystallisation of forsterite and grain growth towards the surface; this triggers thermally induced degradation and decomposition of HNTs adsorbed on the surface. In contrast, at short pulse durations (2×10-5 s), the energy released is insufficient to induce forsterite crystallisation and incorporated HNTs are retained in their original tubular structure. Due to the fine porosity and good structural integrity, such coatings show enhanced corrosion resistance in saline solution. Strong correlations between surface thermodynamic conditions and evolution of coating microstructure disambiguate the fundamental mechanisms underlying incorporation of nanoparticles into growing PEO coatings, thus creating the basis for efficient design of PEO processes and development of novel smart and multifunctional coatings with potential applications in many industrial sectors.

Topics
  • nanoparticle
  • impedance spectroscopy
  • surface
  • grain
  • corrosion
  • phase
  • scanning electron microscopy
  • x-ray diffraction
  • nanotube
  • porosity
  • ceramic
  • decomposition
  • grain growth
  • X-ray spectroscopy