Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Denissen, Paul Johan

  • Google
  • 7
  • 5
  • 172

Delft University of Technology

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (7/7 displayed)

  • 2022An integral non-intrusive electrochemical and in-situ optical technique for the study of the effectiveness of corrosion inhibition12citations
  • 2021When all intermetallics dealloy in AA2024-T332citations
  • 2020In-situ Visual Quantification of Corrosion and Corrosion Protectioncitations
  • 2020Corrosion Inhibition at Scribed Locations in Coated AA2024-T3 by Cerium- and DMTD-Loaded Natural Silica Microparticles under Continuous Immersion and Wet/Dry Cyclic Exposure21citations
  • 2019Interpreting electrochemical noise and monitoring local corrosion by means of highly resolved spatiotemporal real-time optics27citations
  • 2019Reducing subjectivity in EIS interpretation of corrosion and corrosion inhibition processes by in-situ optical analysis38citations
  • 2017Cerium-loaded algae exoskeletons for active corrosion protection of coated AA2024-T342citations

Places of action

Chart of shared publication
Garcia, Santiago J.
6 / 26 shared
Olgiati, M.
1 / 3 shared
Olgiati, Matteo
1 / 3 shared
Volovitch, Polina
1 / 13 shared
Shkirskiy, Viacheslav
1 / 6 shared
Chart of publication period
2022
2021
2020
2019
2017

Co-Authors (by relevance)

  • Garcia, Santiago J.
  • Olgiati, M.
  • Olgiati, Matteo
  • Volovitch, Polina
  • Shkirskiy, Viacheslav
OrganizationsLocationPeople

article

Reducing subjectivity in EIS interpretation of corrosion and corrosion inhibition processes by in-situ optical analysis

  • Denissen, Paul Johan
  • Garcia, Santiago J.
Abstract

An in-situ hyphenated optical and electrochemical method for the real-time study of corrosion and corrosion inhibition processes is presented and validated for the case of AA2024-T3 exposed to two NaCl concentrations and six inhibitors. During testing, 5 μm resolution optical images of the exposed surface are obtained in parallel to electrochemical impedance measurements using a home-made 3D printed electrochemical cell. This method allowed obtaining both optical and electrochemical information of the studied surface with high time correlation. A data treatment analysis of the optical images was established thereby allowing the identification and quantification of corrosion-features related to intermetallic corrosion (e.g. trenching and meta-stable pitting) and co-operative corrosion (e.g. corrosion-rings, domes and surface-oxides) on a spatiotemporal scale, generally only observed through the use of ex-situ methods such as SEM. In addition, the study of the long-term corrosion inhibition of six inhibitors at concentrations ranging from 10 −3 M to 10 −6 M allowed quantifying inhibition kinetics as well as identifying different inhibitor and concentration dependent mechanisms (e.g. Cerium and DEDTC vs. Lithium) and decreasing incongruences between impedance and inhibition behaviour (e.g. DMTD). As a result, the use of quantifiable in-situ optical analysis is confirmed as a powerful tool to better interpret electrochemical signals or monitor electrochemical-dependent surface phenomena. ; Novel Aerospace Materials

Topics
  • surface
  • corrosion
  • scanning electron microscopy
  • Lithium
  • electrochemical-induced impedance spectroscopy
  • intermetallic
  • Cerium